Workforce Effort and Outcome Optimisation

Alex James

Alex James

- Civil engineer > 30 years
- Transport design, project + business case management
- MIEAust, CPEng, RMCP

- Workforce analysis + solutions > 8 year
- Founder of RESRODEL

2

• Project Leader ISO 30343 'Workforce Allocation

How can we make society both more productive and more **humane**?

*Attributed as Peter Druker's life's work

• more **delivery**

- increased margins
- greater wellbeing

Manage human effort better

Better Workforce Decisions

1. Forecast effectiveness

- 2. Interventions that optimise
- 3. See the change to results

Poor-quality **products** or **services** are **delivered** late by stressed people or low utilization erodes margins

Workforce data is complex

How good are we?

- >25% reasons projects fail due to RM
- excess workloads cause 39% workplace stress
- RM ranked 2nd greatest difficulty in PMOs
- 93% of managers believe their workforce not optimised

Resource Management

	April	May	June	July			
Project 11							
Project 12							
Project 13							
Project 14							
Project 15							
Project 16							
Project 17							

Resource Management

	April	May	June	July
Project 11	ᢥ᠋ᢥᢥᡭᢥᢥ	<u>ᡥ</u>		
Project 12	<u> </u>	ŶŶŶŶŶŶŶŶŶŶŶ		
Project 13		ተ ተ ተ	<u> </u>	ትተተተ
Project 14		ተት ሳ	<u> </u>	
Project 15		^ ^	ŶŶŶ Ŷ Ŷ Ŷ	<u> ተተተቀቀቀ</u>
Project 16			<mark>ኯ፟ኯ</mark> ፟ኯ፟ኯ፟ኯ፟	<u>ትትት</u>
Project 17			4	ትዮት ት ተት

I can allocate...

...yet have limited visibility !

Balance Outcomes + Results

Context

Melbourne, Australia

Comprehend + optimise future workforce effort + outcomes

EFFORT MANAGEMENT

This Presentation

A. Nature of effort and workforces

B. Effort Analysis

- 1. Forecasts
- 2. Optimise
- 3. Results
- C. Application
- D. Benefits

Get better Workforce outcomes

Part A: Overview

A1. EffortA2. WellbeingA3. Whole WorkforceA4. Resource management

A1. PHYSICAL EFFORT

Ingredients and consequences of effort

PHYSICAL \rightarrow **EFFORT** \rightarrow OUTCOMES \rightarrow INEFFICIENCIES \rightarrow INTERVENTIONS \rightarrow RESULTS

Effort Product

Effort = Quantity x Time x Rate

Effort Product

Effort = Quantity x Duration x Periods x Rate

Units:

FTE, weeks, days, hours, minutes

Standard Effort

Fewer Longer Days

Standard Effort

1

Rate

Time

Effort: Normalised

x1

person

Longer Slower

Effort: Normalised

Melbourne, Australia

*Indicative Only

Excess work causes... people to work **longer + faster**

but...at a cost!

A2. VITALITY AND WELLBEING

PHYSICAL \rightarrow EFFORT \rightarrow OUTCOMES \rightarrow INEFFICIENCIES \rightarrow INTERVENTIONS \rightarrow RESULTS

Vitality Drawdown

Melbourne, Australia

Vitality Burnout

Melbourne, Australia

Vitality from Workload

Wellbeing from Workload

Melbourne, Australia

WORKLOAD Wellbeing from Workload

JOB DEMAND-RESOURCE THEORY

DEMAND Strain

- work pressure
- emotional demands

RESOURCES Motivation

- career opportunities
- supervisor coaching
- role-clarity
- autonomy

Ref.: www.bennybuttom.com

👤 Project Controls

Aelbourne. Australia

Ref.: Wikipdedia - Job Demand-Resource Theory

A3. THE WHOLE WORKFORCE

Workforces in Workforces

 $\mathsf{PHYSICAL} \to \mathsf{EFFORT} \to \mathsf{OUTCOMES} \to \mathsf{INEFFICIENCIES} \to \mathsf{INTERVENTIONS} \to \mathsf{RESULTS}$

Workforce Levels

A3. RESOURCE DECISIONS

PHYSICAL \rightarrow EFFORT \rightarrow OUTCOMES \rightarrow INEFFICIENCIES \rightarrow INTERVENTIONS \rightarrow RESULTS

Manager's Responsibility

increase or reduce people or work

2. Allocate

people to work, overtime

Conventional RM

Solve Gaps in Effort

Role	Project	Jan	Feb	Mar	Apr	May	Jun
Project Engineer	CA-054	1.0	1.0	1.0	1.0	1.0	1.0
	CA-059	2.0	2.0	3.0	3.0	3.0	2.0
	CA-067						
	CA-069		1.0	1.0	1.0	1.0	1.0
	Total	3.0	4.0	5.0	5.0	5.0	6.0
Project Manager	CA-054	1.0	1.0	1.0	1.0	1.0	1.0
	CA-059	1.0	1.0	1.0	1.0	1.0	1.0
	CA-067			1.0	1.0	1.0	1.0

HAVE

Capacity By Role

			Jan	Feb	Mar	Apr	May	Jun
	BR	Keny Macdo	1.0	1.0	1.0	1.0	1.0	1.0
		Levi Barr	1.0	1.0	1.0	1.0	1.0	1.0
		Total	2.0	2.0	2.0	2.0	2.0	2.0
	ME	Alison Conner	1.0	1.0	1.0	1.0	1.0	1.0
eer		Clive Culter	1.0	1.0	1.0	1.0	1.0	1.0
gin		Lucy Bell	1.0	1.0	1.0	1.0	1.0	1.0
EL		Randall Hammond	1.0	1.0	1.0	1.0	1.0	1.0
ject		Total	4.0	4.0	4.0	4.0	4.0	4.0
Pro	SY	Dianne Lawson	1.0	1.0	1.0	1.0	1.0	1.0
		Ellsworth Butler	1.0	1.0	1.0	1.0	1.0	1.0
		Paul Pink	1.0	1.0	Leave	1.0	1.0	1.0
		Total	3.0	3.0	3.0	3.0	3.0	3.0
	Total		9.0	9.0	9.0	9.0	9.0	9.0
ject Manager	BR	Lynne Matthews	1.0	1.0	1.020	1.0	1.0	1.0
		Sadie Fleming	1.0	1.0	1.02.0	1.0	1.0	1.0
		Total	2.0	2.0	2.0	2.0	2.0	2.0
	ME	Dana Lee	1.0	1.0	1.0	1.0	1.0	1.0
		Jean Wilson	1.0	1.0	1.0	1.0	1.0	1.0
		Lavern Daniels	1.0	1.0	1.0	1.0	1.0	1.0
		Total	3.0	3.0	3.0	3.0	3.0	3.0
Lo Lo	SY	Brian Mosley	1.0	1.0	1.0	1.0	1.0	1.0

Jan

3.0

NEED

Feb

4.0

Mar

5.0

May

5.0

Jun

6.0

Apr

5.0

55

USE

NEED HAVE

Jan	Feb	Mar	Apr	May	Jun
3.0	4.0	5.0	5.0	5.0	6.0
4.0	4.0	4.0	4.0	4.0	4.0

Resource Name	Project	Jan	Feb	Mar	Apr	May	Jun
Alison Conner	CA-054	1.0	1.0	1.0			
	CA-x1						2.0
	Total	1.0	1.0	1.0			2.0
Clive Culter	CA-059	1.0	1.0	1.0	1.0	1.0	1.0
	Total	1.0	1.0	1.0	1.0	1.0	1.0
Lucy Bell	CA-054						1.0
	CA-069		1.0	1.0	1.0	1.0	1.0
	Total		1.0	1.0	1.0	1.0	2.0
Randall Hammond	CA-057						
	CA-059	1.0	1.0	1.0	1.0	1.0	1.0
	CA-067						
	Total	1.0	1.0	1.0	1.0	1.0	1.0
Grand Total		3.0	4.0	4.0	3.0	3.0	6.0

RES

NEED HAVE **USE** DEMAND CAPACITY **ALLOCATION**

Melbourne, Australia

NEED HAVE **USE** DEMAND CAPACITY **ALLOCATION**

Real Questions

- 1. Can we **deliver**?
- 2. Will we be **profitable?**
- 3. Will our **people** be okay?
- 4. How do we balance results?

Part B ANALYSIS

Get insights for better workforce decisions

Levels of Analysis

B1. ForecastsB2. InterventionsB3. Results

B.1.1 EFFORT OUTCOME WINDOW

At glance understand your workforces' effectiveness

IMPLICATIONS

65

Outcome Tolerances

ABILITY	Max.	1.4
ABILITY	Min.	0.9
EFFICIENCY	Max.	1.2
EFFICIENCY	Min.	0.75
INTENSITY	Max.	1.2
INTENSITY	Min.	0.8

INTERVENTIONS

👤 Project Controls

Melbourne, Australia

IMPROVED

B1 FORECASTS B1.1 OUTCOMES

Know when and where your workforce will be ineffective

PHYSICAL \rightarrow EFFORT \rightarrow OUTCOMES \rightarrow INEFFICIENCIES \rightarrow INTERVENTIONS \rightarrow RESULTS

Outcome Forecasts

ABILITY to deliver services or products **EFFICIENCY** of people used (utilization) **INTENSITY** productivity of people

Outcome Ratios

p = Potential, i = Intent

Effort Translated To Outcomes

73

B2.2 FORECAST INEFFICIENCIES

Roll up and drill down into your workforce inefficiencies

PHYSICAL \rightarrow EFFORT \rightarrow OUTCOMES \rightarrow INEFFICIENCIES \rightarrow INTERVENTIONS \rightarrow RESULTS

Inefficiencies

All Outcomes

EFFICIENCY

All Outcomes

Melbourne, Australia

EFFICIENCY

The Resource Role Mode

Roll Up

All Pools

Roll Up

Roll Up

EFFORT THEORY

Circular + Continuous

Effort \rightarrow Outcome

EFFORT MANAGEMENT THEOREM

Definitions

Effort Management (EM) sub-domain of WFM spanning WF Planning and WF Allocation

Advanced Effort Management (AEM) deeper actionable insights to forecast + optimise a workforce

Outcome Unity Equation

ABILITY_p x EFFICIENCY_i x INTENSITY_i = 1

Outcome Unity Equation

ABILITY x EFFICIENCY x INTENSITY = 1

Apr

0.8 × 0.75 × 1.67=1

Outcome Interdependence

lf Workload intensity constant = 1and Ability to deliver = 1.25then Efficiency (utilization) = 0.8

because $1 \times 1.25 \times 0.8 = 1$

Outcome Unity Equation

ABILITY x EFFICIENCY x INTENSITY = 1

Apr

0.8 x 0.75 x 1.67=1

3D Unified Volume

0.8 × 0.75 × 1.67=1

3D Unified Volume

0.8 × 0.75 × 1.67=1

All Workforces

Effort Outcome Window

3D Point

	AB	EF IN
Potential	0.37	2.67 0.30
Intent	1.25	3.33 0.80
		I

3D Point

Effort Outcome Window

Further Theory

Right-Hand Set			Left-Hand Set	
•	Ability _p =	C/D	(2)	• <u>Ability</u> i = A/D (5)
•	Efficiency _i =	A/C	(3)	• <u>Efficiency_p = D/C (6)</u>
•	Intensity _i =	D/A	(4)	• Intensity _p = C/A (7)

B2 INTERVENTIONS

GET INTERVENTIONS THAT OPTIMISE

PHYSICAL \rightarrow EFFORT \rightarrow OUTCOMES \rightarrow INEFFICIENCIES \rightarrow INTERVENTIONS \rightarrow RESULTS

Project Engineers

USE UNUSED STRETCH

NEW YORK Py 2 Pr 2 DALLAS

	Di 📩 Dig
	🏊 📩 💹
	P 🖧 P
	Py 🐈 P y
	211 👬 211
	21 👗 21
	211 👗 🕰
4	SAN
	FRANCISCO

JULY

		Jun	Jul	Aug	Se
SE	SF		1.0		
Allocated	DA				
People	NY	1.0		1.0	1
RETCH	SF		1.0		
easonable	DA				
т	NY		0.3	0.8	C
RANSFER	SF		1.0		
eople /	DA	2.0	- 2.0	2.0	2
Vork	NY		1.0		
NBOARD	SF		0.5	1.2	1
ap Fill	DA				
	NY		0.5	0.1	
BOARD	SF		1.6	1.1	1
place OT	DA				
	NY		0.4	1.1	C
quire Work	SF				
ownsize	DA				
	NY				

<u>WHOLE</u> ORGANISATION

SAN

FRANCISCO

				-	USE UNUSED
	Jun	Jul	Aug	Se	OTDET CH
USE UnAllocated People	3.0	3.7	4.4	2.8	TRANSFER
TRANSFER People / Work	5.2	6.0	4.4	5.3	ONBOARD
ONBOARD Gap Fill	0.5	1.0	2.5	5.2	NEW WORK DOWNSIZE
ONBOARD Replace OT	0.6	3.4	4.0	4.7	2 C
Aquire Work / Downsize	20.5	21.0	19.6	18.	NEW YORK
TOTAL	35.7	45.9	44.2	45.	

Precise Interventions

Transfer Surplus to Deficit

B3: RESULTANT IMPACTS

 $\mathsf{PHYSICAL} \rightarrow \mathsf{EFFORT} \rightarrow \mathsf{OUTCOMES} \rightarrow \mathsf{INEFFICIENCIES} \rightarrow \mathsf{INTERVENTIONS} \rightarrow \mathsf{RESULTS}$

Good Decisions

1. Translate outcomes \rightarrow results

Outcomes Into Results

Good Decisions

- 1. Translate outcomes → results
- 2. Select interventions by compromise
- 3. Understand resultant impacts between scenarios

Quantity Time Quality

Step 5: Delivery – Do Nothing

Delivery – Select Interven.

Margins

INEFFICIENCIES

e.g.

Ability shortfall = lost production = revenue loss Efficiency shortfall = low utilization = unnecessary cost

INTERVENTIONS

e.g.

- Increase Ability = revenue increase
- Increase Efficiency = cost reduction

Margin Impact

USE UnAllocated People	\checkmark
TRANSFER People / Work	
ONBOARD Gap Fill	\checkmark
ONBOARD Replace OT	
Aquire Work / Downsize	

Well-being

Well-being/ performance forecast

PERFORMANCE

Well-being/

performance

survey

BENNY

BUTTON

Workload Intensity

Well-being

PERFORMANCE \rightarrow

*Subject to ongoing research, development, testing and validation

The Resource Role Mode

WELLBEING

PART C: APPLICATION

Export To Spreadsheet

Project controllers Resource managers Workforce planners Estimators Data analysts

PART D: BENEFITS

 $\mathsf{PHYSICAL} \rightarrow \mathsf{EFFORT} \rightarrow \mathsf{OUTCOMES} \rightarrow \mathsf{INEFFICIENCIES} \rightarrow \mathsf{INTERVENTIONS} \rightarrow \mathsf{RESULTS}$

Do Better

Link effort → results Start with: Need, Have + Use

Effort Management

Effort Management Theorem

Outcome Unity Equation

Advanced Effort Mgt.

•Forecast outcomes

- Recommend interventions
- Translates change into results
- •EOW unified visualisation

Actionable Insights

Deliver more Increase Margins Improve well-being

Effort Management

A new way to find greater productivity in a humane society

Workforce effort and outcome optimization Alex James alex.james@resrodel.com

Outcome Ratios

```
Set 1: ABILITY<sub>p</sub> = Capacity / Demand
EFFICIENCY<sub>i</sub> = Allocation / Capacity
INTENSITY<sub>i</sub> = Demand / Allocation
```

Set 2: $ABILITY_i$ = Allocation / Demand $EFFICIENCY_p$ = Demand / Capacity $INTENSITY_p$ = Capacity / Allocation

p = Potential, i = Intent

Example Tools

Oracle Primavera P6 [™] (or other) AEM in spreadsheets Tableau[™] / PowerBI [™]

- 1. collate effort
- 2. forecast workforce
- 3. report and compare at all levels
- 4. suggest optimisations
- 5. select interventions + assess impacts
- 6. decide and act

Example Workforce

Melbourne, Australia

