"Project controls are all about collaboration and teamwork"

(W) www.projectcontrolexpo.com/uk

(M) +44 (0) 203 883 1386

(E) info@projectcontrolexpo.com

2022

Project Controls

Understanding a Quantitative Risk Analysis (QRA)

Simon White – Trigo White Ltd

simon@trigowhite.com

Trigo White Ltd - Risk Management

Introduction

- QRA
 - How much contingency do we need, to cover risk? e.g. at P10, P50, P90
 - Which risks should we mitigate? is it worth it?
 - How much risk is there? is it realistic?
- We can quantify risk risk workshops, etc.
- But do we trust the QRA?
 - Trust the inputs who contributed, where assessments came from
 - Trust the logic of a schedule need realistic forward-driven schedule logic
 - Trust our understanding of probabilities not since school!

Trigo White Ltd - Risk Management

Introduction

- We want to:
 - See the link between the inputs and outputs
 - Explain the overall contingency, in terms of individual risks
- So that we can:
 - Understand which risks the QRA most sensitive to
 - Trust that the QRA represents reality

Case study

- Major oil operator use QRA to approve and manage all upstream projects
 - Integrated cost and schedule analysis (CSRA)
 - Risk workshops to assess and quantify all risk to project execution
 - Evaluate contingency more efficient use of capital
- They require breakdowns of contingency into individual exposures of risks
 - Understand risk, validate risk assessments
 - Evaluate mitigation / responses
 - **Compare** with other projects
- They use White Box for PRA a tool to calculate individual exposures of risks

Trigo White Ltd - Risk Management

Terminology

- Probability distribution the range of likely outcomes
- P10, P50, P90 etc. the outcome which has a 10%, 50% and 90% chance (respectively) of being met
- Probability how likely to happen
- Impact how much, if it happens
- Exposure ????
- Two- and three-point estimates "between x and y", "... most likely z"
- **QRA** Quantitative Risk Analysis
- SRA Quantitative Schedule Risk Analysis
- CRA Quantitative Cost Risk Analysis
- CSRA Quantitative Cost and Schedule Risk Analysis

Trigo White Ltd - Risk Management

How do we know the results of a QRA are reasonable?

- Many hindrances:
 - missing risks
 - risks on a non-critical activity
 - probability too low (or too high)
 - underestimated worst case impact
 - unrealistic schedule logic (e.g. constraints instead of finish-to-start logic links)
- Comparing to our expectations can be circular
 - We expect results X
 - Model gives Y => model is wrong => we adjust the model, until
 - Model gives X => model is right!
- Need a way to understand our QRA

Trigo White Ltd - Risk Management

Measuring exposure helps understand the QRA

- Need to see how the QRA has arrived at the results
- Need to see the **exposure** of each individual risk, on overall project
 - We assess the risk against a specific activity
 - How does it affect the overall project?
- Better understanding of a QRA
 - The exposure of each risk is realistic
 => the overall output is realistic

Defining the exposure of a risk

- For example, a 20% chance of losing £100
- "How much richer would I be, without that risk?"
- Not P x I (probability times impact)!
 - 20% x £100 = £20

Defining the exposure of a risk

- For example, a 20% chance of losing £100
- "How much richer would I be, without that risk?"
- Imagine looking back:
 - "What was our exposure to that risk, in the end?"
 - Could be either zero or £100
 - Won't ever be the average of £20!

London.UK

- Fabrication risk:
 - Probability 70%
 - Impact P10: +1 month; P50: +2 months; P90: +4 months
- What is the exposure of the **fabrication risk**?

Exposure indicates probability

Trigo White Ltd - Risk Management

Exposure indicates range of impacts

Trigo White Ltd - Risk Management

- Fabrication risk:
 - Probability 70%
 - Impact P10: +1 month; P50: +2 months; P90: +4 months
- Now what is the exposure of the **fabrication risk**?

- Approvals risk:
 - Probability 50%
 - Impact P10: +2 weeks; P50: +1 month; P90: +2 months

London,UK

- Fabrication risk:
 - Probability 70%
 - Impact P10: +1 month; P50: +2 months; P90: +4 months
- What is the exposure of the **approvals risk**?

- Approvals risk:
 - Probability 50%
 - Impact P10: +2 weeks; P50: +1 month; P90: +2 months

What does exposure reveal?

- The exposure is not always obvious, particularly in an SRA
- Ignoring them would mean less understanding, less confidence in any QRA
- We can see how the QRA has arrived at the results
- The exposure of each individual risk, on overall project
 - We assess the risk against a specific activity
 - Reveals how it affects the overall project
- Better understanding of a QRA
 - The exposure of each risk is realistic
 => the overall output is realistic

Trigo White Ltd - Risk Management

What does exposure reveal?

Conclusion

- Calculating exposure:
 - Shows how much effect each risk is really having on the overall project
 - Gives insight into the logic of the model
 - Gives us a breakdown that explains the overall contingency (e.g. at P10, P50, P90)
- Explain contingency
 - "Of the 3 months' contingency at P50, 1 month is caused by risk X alone"
- Validate the QRA
 - "Why is that the top risk in the P50 case?"
 - "Why is this risk bigger in the P90 case?"
 - Reveal logic errors, assessment errors, tool errors
- "If you disagree with the outputs, which individual risk's assessment do you disagree with?"

Summary

- Exposure of a risk = "How much better would the project be, without that risk?"
- Exposure is a probability distribution (the risk might not happen)
- Exposure is not probability times impact (P x I)
 - P x I doesn't represent any possible outcome
 - P x I doesn't reflect the critical path
- Overall risk exposure = sum of individual exposures

THANK YOU

Understanding a Quantitative Risk Analysis (QRA)

Simon White – Trigo White Ltd

simon@trigowhite.com

Trigo White Ltd - Risk Management