

How a Digital PMO should add value not cost

Behind the buzzwords of BIM, EVM and Digital Twins

Why Me?

IAIN CAMERON

Director at Assystem

Chartered Civil Engineer

- Infrastructure Experience 30 yrs
- Contracting, Client and Consulting
- PMO and Controls Subject Matter Expert
- Multiple Infrastructure Domains
- Worldwide Assignments
- Sharing of Experience & Learning

WHY A DIGITAL PMO?

 \bigcirc

The importance of productivity in Infrastructure (aka Construction and Civil Engineering)

"Productivity isn't everything, but in the long run it is almost everything."

- Productivity gap equates to ~£10.1Bn annually
- Projected net zero carbon funding = £10Bn annually
- Improving infrastructure productivity equates to net zero carbon
- Productivity = Value Added / People Hours
- Increase Value
- Lower People Hours
- Develop and integrate technology and data skills into Infrastructure PMO

Paul Krugman, Nobel Laureate 1994, Economics

The importance of energy security

- Pursuit of energy resources currently contributes to international conflict and climate change
- Limited minerals, fossil fuels
- Solar, wind, hydrogen, nuclear all important in electrification and carbon reduction
- Investment in generation and transmission infrastructure needs to increase

Productivity + energy security => prioritise increasing infrastructure value and reducing people hrs

What adds value in infrastructure delivery?

"..study highlighted...average productivity between 2 groups varied by more than 50%...the **rewards for finding out what affected these variances could be huge**..."

CIOB productivity report https://www.ciob.org/media/59/download))

"outcomes of this research show **predictability** to be.. value increasing mechanism"

Construction Industry Institute <u>https://www.construction-institute.org/resources/knowledgebase/knowledge-</u> <u>areas/project-planning/topics/rt-291</u> UNDERSTAND VARIABILITY

" productivity is strongly influenced by ability of site management to **communicate well**"

CIOB productivity report https://www.ciob.org/media/59/download))

The relevance of the Digital Project Management Office

The relevance of the Digital Project Management Office

The effective Digital PMO:

- Uses electronic data EVERYWHERE to AUTOMATE services and COMMUNICATE messages
- SIMPLY specifies digital artefact TRANSMISSION across supply chain boundaries
- VALIDATES digital data and meta-data to confirm it is appropriate
- Uses TECHNOLOGY to synthesise INFORMATION from DATA
- Improves delivery outcomes by presenting results INFLUENTIALLY, VISUALLY and SIMPLY
- Provides the governance behind forecasts and data to ensure INTEGRITY and RELIABILITY

A services vision

Exchange Inform Doc Plann	ation Requirements Suments BIM hing etc	Project Information Docu B Plann	tion Requirements uments BIM ing etc	Asset Information Requirements Global/National Standards Operational Standards Reference Data Standards				
Engineering Requirements & Modelling, Simulation	Governing Asset Modelling – 2D/3D	Planning the Assets – cost & schedule	QA for sub- sections for of Assets	Monitoring delivery of the Assets – change & controls	Handover and/or operation of the Assets			
 Requirements mgt system Simulations (maybe with a BIM or other engineering models) 	 BIM & GIS Schemas BIM authoring tools Insist on IFC formats (+ native if needed) Consider Meta-Data very carefully 	Cost, Scheduling Schemas • Scheduling Solution Estimating Solution • Estimate qtys derived from BIM? • Time-phase	Engineering Content Schemas • Engineering solutions as required for calculations • Common Data Environment	EVM & Payment Schemas • Contract Mgt system Controls solution off- the-shelf but often bespoke for temporary organisations	 Asset Management Solution Visually enable if practicable 			
ENGINEERING REQUIREMENTS	PROJECT INFORMATIC Building Blocks'	ON MODEL – PIM – RED and 'Schemas' in EXCH	describes digital data re ANGE INFORMATION REC	equirements or 'Data QUIREMENTS (EIR)	ASSET INFORMATION MODEL			

UNDERSTAND VARIABILITY A SIMPLE EXAMPLE OF HOW DATA CLASSIEIC

A SIMPLE EXAMPLE OF HOW DATA CLASSIFICATION CAN CONTRIBUTE SWITCH ON & DIGITAL FOR ENERGY TRANSITION

0_11

OFFICIAL

Reference Class Forecasting

To get increasing CERTAINTY of COST or TIME (horizontal axis) Apply different UPLIFTS to COST OR TIME bases (vertical axis)

- 5 Reference Classes here; at 'Project' level
- Collect Initial Business Case, Final Business Case and Out-turn data on cost and duration of each Project
- To develop, establish more reference classes with authentic data; at a level of detail below 'Project' e.g. Control Account
- Create Control Accounts that can be cross-referenced to global standards

Classifying Scope – a Delivery Matrix

97937 97954 98584 98946 98961 99475 99960 99975 99989 Station - Westmead Station - Paramatta Station - Olympic Park Station - North Strathfield Station - Burwood North Station - Five Dock Station - The Bays Station - Pyrmont Station - Hunter Street (Sydney CBD) MRS-M11-WMD-SN650 MRS-M11-PTA-SN600 MRS-M11-OLP-SN400 MRS-M11-NST-SN350 MRS-M11-BWT-SN300 MRS-M11-FDK-SN250 MRS-M11-TBY-SN200 MRS-M11-PYR-SN150 MRS-M11-SCB-SN100

	MRS-M11-WMD-SN650 MRS-M11-PTA-SN600 MRS-M11-OLP-SN400 MF	S-M11-NST-SN350 MRS-M11-BWT-SN300 MRS-M11-FDK-SN250 MRS-M	I11-TBY-SN200 MRS-M11-PYR-SN150 MRS-M11-SCB-SN100	
SM.1 SM-965 Places				Breakdown, Location
SM.1.1 SM-966 Stations				
SM.1.1.1 SM-967 Station Earthworks				Breakdown
SM.1.1.1.1 SM-968 Underground station earthworks				DICURUOWII
SM.1.1.1.2 SM-973 At-grade station earthworks				
SM.1.1.2 SM-975 Station structure				
SM.1.1.2.1 SM-976 Station foundations				ARS - general for
SM.1.1.2.2 SM-977 Station retaining structures and walls				ADJ – general iol
SM.1.1.2.3 SM-978 Station water and wastewater infrastructure				
SM.1.1.2.4 SM-979 Station building structures				ordanisation/industry
SM.1.1.3 SM-980 Underground station structures				5 , 5
SM.1.1.3.1 SM-981 Station box structure				
SM.1.1.3.2 SM-982 Station cavern structure				
SM.1.1.3.3 SM-983 Station adit structure				LB2 = project specific
SM.1.1.3.4 SM-984 Station shaft structure				[]
SM.1.1.4 SM-991 Station fitout				
SM.1.1.4.1 SM-992 Station entrance				
SM.1.1.4.10 SM-1001 Mezzanine level				Intersection = Control Account
SM.1.1.4.11 SM-1002 Platform				
SM.1.1.4.12 SM-1003 Canopies and awnings				
SM.1.1.4.13 SM-1004 Customer toilets				
SM.1.1.4.14 SM-1005 Station seating				Colour codes can indicate
SM.1.1.4.15 SM-1006 Station facades				
SM.1.1.4.16 SM-1007 Station systems supporting infrastructure				Contracting Stratogy
SM.1.1.4.17 SM-1009 Station acoustics				Contracting Strategy
SM.1.1.4.18 SM-1010 Building Ventilation				• • • • • • • • • • • • • • • • • • • •
SM.1.1.4.19 SM-1011 Back of house areas				
SM.1.1.4.2 SM-993 Gateline				3rd structure - Lifecucle
SM.1.1.4.3 SM-994 Station adit				Structure – Litecycle.
SM.1.1.4.4 SM-995 Station shaft				
SM.1.1.4.5 SM-996 Station stairways				concept, detail, construct,
SM.1.1.4.6 SM-997 Station public art				
SM.1.1.4.7 SM-998 Emergency areas				commission
SM.1.1.4.8 SM-999 Station fitout branding, wavfinding, signage and customer information	n			COMMISSION
SM.1.1.4.9 SM-1000 Station concourse				
SM.1.1.5 SM-1029 Station systems				
SM.1.1.5.1 SM-1044 Station lighting				'Cube' Intersection = W/RS
SM.1.1.5.10 SM-1048 Station Hydraulics, Plumbing and Sewage				Cube Intersection - WDS
SM.1.1.5.11 SM-1055 Station Vertical Transport				
SM.1.1.5.12 SM-1060 Payment and Access Systems				
SM.1.1.5.13 SM-1063 Station advertising and secondary revenue systems				DowerBI - right-click and 'drill
SM.1.1.5.14 SM-1066 Station communication & information Systems				TOWERDT HIGHL CHEK and unit
SM.1.1.5.15 SM-1090 Station fire detection and suppression systems				جاجبت جخ مبامناتهم متبيط مخلطه بمسطح
SM.1.1.5.18 SM-1043 Station earthing, bonding and isolation				through to hyperlinks to web-
SM.1.1.5.4 SM-1050 Environmental control system				
SM.1.1.5.5 SM-1065 Building Management Control Systems (BMCS)				based Scope Book
SM.1.1.5.6 SM-1091 Automated external defibrillators				suscu scope book,
SM.1.1.5.8 SM-1093 Station Combined Service Route				Poquiromonte matrix ITD
SM.1.1.5.9 SM-1036 Station LV supply and distribution				Requirements matrix, ITP
				-

• 2 basic structures: Asset

Structure control accounts using ABS & LBS

	CONTRACT XYZ	Abutment 1	Pier 2	Pier 3	Pier 4	Abutment 5	Deck A	Ground Access	Emb _{ankment XY7}	
ABS	Description	A.A.A	A.A.B	A.A.C	A.A.D	A.A.E	A.A.F	A.A.G	A.B.0	
2.1.0	Foundations		х	х	х					
2.2.1	Piers		х	х	х					
2.2.2	Abutments	х				х				
2.3.1	Bearings		х	х	х					
2.3.2	Deck structure						х			
2.3.3	Parapets						Х		х	
2.3.4	Waterproofing & Drainage System							х	х	
3.3.1	Catchpits								х	
3.3.2	Gullies								х	

- Define Asset Breakdown (ABS) – with UoM for productivity and Uniclass EF code
- Define Location Breakdown (LBS) and Uniclass SL code
- Define the Delivery Matrix map to Uniclass

COMMUNICATE EFFECTIVELY SIMPLE EXAMPLES OF HOW DIGITISATION AND VISUALISATION CAN HELP

SWITCH ON ENGINEERING & DIGITAL FOR ENERGY TRANSITION

OFFICIAL

Example – DataOps rapid report building and data integration

Example – Integrating Performance Information & Visualisation for Portfolio

17

Example – Integration for Cost/Time Performance Diagnostics

	QTY VERSION COMPA Select two versions to see diffe	TAE 4.	TABLE DETAIL 4. Discipline			VERSION A Jul-23			VERSION B Baseline-BUF4		
OVERVIEW	Version A	Versio	on B			Variand	ce (A le	ess B)			
TIME PHASING 🗸	90.2M	84.6M				▲ 6.6% 5.6M					
ies	QTY COMPARISON Select	chart for	overview	or table	for detai	>		th	Period ~	S-Curve	Table
	Financial Year	Y24/25		FY25/26			FY26/27			Total	
ne	4. Discipline	Var	A	В	Var	A	В	Var	A	в	Var
n Comparison >	DESI - Design	15							1,064	1,049	15
	STAF - Staff	0	1,213	1,089	124	86	7	79	12,103	12,103	0
PROGRESS	TEMP - Temp Roads / Assets	10,370	184,966	185,685	-719				7,659,310	6,649,433	1,009,877
	COMP - Compounds								95,801	95,801	0
DETAILED ANALYSIS	PREL - Prelims	4,606,000	-800,000	307,564	-1,107,564	-320,000		-320,000	-3,958,000	2,333,564	-6,291,56
	EWKS - Earthworks	,229,510	12,845,125	4,926,717	7,918,409	2,498,797	61,373	2,437,424	82,849,004	70,580,324	12,268,68
TOOLS	HIGH - Highways (Inc Highway Drainage)	1,242	111,669	99,956	11,712	5,871	930	4,940	736,055	733,237	2,817
	CULV - Culverts & ATS	-908,471	1,408	190,668	-189,260	1	158	-157	338,087	1,794,390	-1,456,30
									177 030	120.075	
	STRU - Structures	44,819	23,318	21,377	1,941	0	0	0	477,839	439,875	37,964

Use to triangulate with 'observations' and test accuracy/consistency

- How does EAC compare with my budget or funding limit?
- What are the major Compensation Events implemented in the month?
- Where are the variances in forecasting accuracy?
- Click on a tile to expand
- Go back and review any period
- Compare any period with any other period
- Change row
 configuration/drill in
- Quantities AND Costs

Benefits – Integration for Cost/Time Performance Diagnostics

Performance

Time is critical in the reporting cycle.

Month end data consolidation can take over 12 hours to generate monthly report.

We achieve it in less than **5 minutes.**

IP Ownership

Using standard cloud tools, Assystem own **100%** of the dashboard and integrations, and aren't tied to any one vendor's system.

We can **respond** and develop to evolving requirements, without relying on 3rd parties.

OFFICIAL

Accountability

Simplifying the processes gives Executives and Project Controls Managers more confidence in using the system.

This increases accountability and ownership.

Decision making

Giving decision makers better data faster has a powerful positive impact.

Better decision making means better project outcomes.

MANAGEMENT CAN HELP

FORECAST OUTCOMES SIMPLE EXAMPLES OF HOW DIGITAL DATA INTEGRATION AND EARNED VALUE

ON ENGINEERING & DIGITAL FOR ENERGY TRANSITION

OFFICIAL

Example – Cost at Completion Forecast History Initial cost forecast increase – leading to desperately trying to identify cost savings

Example – Cost at Completion Forecast History

Initial cost forecast increase – leading to desperately trying to identify cost savings

Timescale

Example – Cost at Completion Forecast History

Two new schedule baselines – <u>40% elapsed time until 'reality' is 'accepted'</u>

Half-way through project – opportunity to optimise or redefine is now lost - but situation predicted at 7% elapsed time. A good DPMO prevent this OR at least will maintain evidence as to what was predicted, when.

TAKE-AWAYS

INFRASTRUCTURE

We need to invest in energy security and alternative energies or lose quality of life Infrastructure productivity lags other parts of the

VARIABILITY

economy

Build and use a few simple classifications

Validate your data

Hook up with academia maybe to help analyse the results

PRODUCTIVITY

Understanding variability, consistent forecasting and helping communication, are key enablers to help productivity Digital PMO Processes/Data Models help **FORECASTING**

Use your digital data in reference class forecasting

Build the classifications into your EVM solution

Can be of forensic value and withstand heavy scrutiny

DIGITAL

Can provide insights, at low cost, if well specified across the supply chain

Integrate digital skills with domain and controls experience in your PMO

COMUNICATE

Visualise everywhere you can find a use case

Simplify data transmission across supply chain

Work 'Agilely' with your data

LOCATIONS

United Kingdom | France | Finland | Turkey | India Uzbekistan | Saudi Arabia | Morocco | Egypt

THANK YOU.

- 6 020 7404 4826
- icameron@assystem.com

www.assystem.com