
1

“I paid for cost management software. Why are they still using spreadsheets?”
Recognizing Mistakes that Break Cost Tool Implementations

Abstract - Organizations are rapidly adopting cost control software, eager to take advantage of the

automation, standardization, data analytics, and benchmarking capabilities such tools offer to save

users’ time. The extent a project controller benefits from cost software, however, directly relates to the

decisions made during software implementation—and bad decisions can have massive impacts later.

Many organizations believe that adhering to solid project controls theory or recreating existing

procedures will be enough to deliver but find their cost engineers reluctant to abandon spreadsheets. A

successful software implementation ultimately depends on end-user and project management buy-in. It

must recognize the complexities of the cost engineer’s day-job, their reporting demands, and offer

meaningful improvements or end-users will resist change. This paper seeks to elucidate frequent

mistakes organizations make when adopting cost software, along with case studies drawn from the

author’s experience using and implementing such tools.

Author - Jason Kimbrell is a Project Controls Specialist at Omega 365, where he develops and

implements the Omega Pims Cost tool for clients around the world. Prior, he spent nearly a decade as a

cost engineer in Shell’s capital projects portfolio, working on projects in upstream, downstream, and

LNG, as well as serving on the company’s cost software pilot team as a super user.

Introduction

The past decade has seen remarkable advancements in cost management software, which offer tangible

benefits to the cost engineer that spreadsheets cannot match. Organizations have moved to adopt these

technologies, hoping to increase productivity by automating data-entry and non-value-added tasks

while redeploying cost engineering resources towards analytical pursuits. Yet cost engineers have not

embraced digital tools the way that planners and schedulers have embraced Primavera. Despite

significant money and time, organizations complain that their cost engineers continue to clutch the

broken-formulas and manual data entry of spreadsheets like castaways clinging to life rafts watching the

Titanic sink. If cost software has come so far, why are cost engineers still reluctant to change?

Decisions made during cost software implementation have an outsized impact on tool adoption rates.

Organizations must consider the realities of the cost engineer’s demands and the stakeholders they

report to. Frequently, organizations outfit implementation teams with little input from future end-users,

leading to tools that, at best, may be theoretically proficient, and at worst, designed for a different

discipline all together. Cost practitioners and their stakeholders must be involved at every step, from

deciding which software to go with, to determining the tasks to automate, the level of detail to

standardize, and the kinds of reports the software should produce.

What are digital cost management tools and why use them?

While cost management software may sometimes look and feel like a spreadsheet or make extensive

use of data from an enterprise resource planning tool (SAP, Oracle, JDE, etc.), it is distinct in that it is

designed for the express purpose of cost control [1, p.3]. For example, reputable cost management

software features built-in project controls functions, such as earned value analysis, estimate forecasting,

2

automated time phasing of cost based on schedule dates, the creation of cost breakdown structures and

alternative reporting structures, and reporting.

Cost tools standardize processes, meaning every cost engineer performs the same tasks in the same

way. This allows organizations to easily onboard resources to fill gaps, as resources only need know the

scope and not a new workbook to contribute. Additionally, standardization allows for data sets that are

ripe for data analytics. Visualizations that were previously difficult to achieve because of sample

differences no longer have those differences. The same can be said for benchmarking, where users can

tag data like Primavera P6 users tag schedule activities.

Finally, cost software offers more security than spreadsheets. Reputable systems have user access rights

that limit whether users can edit or view data. Software also performs more efficiently than

spreadsheets, where a user might edit a formula regularly during the control process, thus introducing

the chance for errors.

The result is that the focus of the cost engineer’s job moves away from inputting data or managing

formulas in cells and shifts towards value-add activities like analysis.

What does a successful implementation look like?

To deploy cost software, organizations work through four phases, as described in AACEI’s recommended

practice RP94R-18 [1, p.2].

Phase 1 – Readiness Assessment - Organizations form an implementation team. They analyze their

current processes in detail and develop a list of requirements communicated to software vendors, who

will in turn provide demos. At the end of this phase, the organization will select a software package to

implement.

Phase 2 – Installation and Configuration – The software developer conducts workshops with the

organization to fine-tune requirements and identify any alterations to “out of the box” functionality to

meet the specifications. The developer then works with IT systems to connect to interfaces such as SAP

or P6. At the end of the phase, the software will be fit for a pilot team to test the tool.

Phase 3 – Pilot Project – Developers train a project team to test the tool and serve as superusers for the

initial roll-out in the next phase. Simultaneously, the organization updates procedures and creates a roll-

out plan. At the end of this phase, the organization should decide if the software is ready for a wide

audience, and if not, determine what should change or if the project should go forward.

Phase 4 – Implementation and Rollout – Project teams begin using the tool in earnest after end-user

training. Reports and features that may have been considered “nice-to-have” are rolled out and a

governance is put in place to handle changes to the software in the future.

Success will differ for each organization. A good tool will replicate the existing data outputs while

making the inputs much easier to work with. It might tighten the organization’s internal processes or

bolster the organization’s ability to handle multiple projects with limited resources.

The best metric for a successful cost software implementation, however, is the number of active users in

the system on daily basis. If the tool does what it is designed for, active user counts should increase

proportional to the number of projects in the tool.

3

Where does software go wrong and what can we do about it?

Mistake #1 – The wrong people are in the room

If cost control software lives and dies by its ability offer meaningful change to the end user, the end user

must be heavily involved in its development. Stakeholders outside of project controls should also be

included, even if they do not benefit directly, or the tool will phase similar push back.

For a successful roll-out, the organization’s software team should include:

• Project Controls Practitioners: Practitioners have a trench perspective that allows them to give

input on what will work and what will not. They must buy-in to any changes to existing practices.

Organizations should include representatives from multiple business streams to prevent one

team from dictating how all teams work.

• Project Controls Leadership: Leadership should drive software to balance the organization’s

goals and procedures while solving the issues that plague end-users. They must endorse the

tool, or end-users will view it as optional.

• Project Management: Project Management must understand the value of a tool that they will

never use and will likely change the look and feel of deliverables they have relied upon to make

decisions. If stakeholders do not buy-in, end users will continue to produce the old reports

rendering the implementation pointless.

• Finance: Second to project management, cost engineering interfaces with finance so much that

any changes to processes and deliverables need finance buy-in. Finance should not, however,

drive the development of the tool.

• IT: Cost tools are by nature information technology, and project controls managers are not

typically IT experts. IT helps integrate the tool in the greater software framework of the

organization.

Mistake #2 – Not Enough Self Reflection

Project controls tools reflect what the organization brings to them. They are not silver bullets for poor

project controls and can exacerbate problems if allowed. Even in the best circumstances, they will

create a significant change in the way an organization controls cost.

Successful implementations place an emphasis on the “Readiness Assessment” phase. Like a kaizen in

lean methodology, they seek to understand the current state of cost engineering without trying to fix

the issues. The end-users are in the best position to make that decision. They know what works, what

fails, and where skill or practice gaps exist. Stakeholders, too, provide insight on why they ask for

particular reports, and may even be convinced to do things a better way. Teams should pay attention to

pain points, but should also determine whether software is needed to fix them or just a simple process

change.

Case Study: Monthly Report Template

An organization sought to reduce the volume and intensity of project management reporting by

adopting a cost tool. The implementation team, comprised mostly of project controls leadership, had

the software developer recreate a new monthly report template that leadership had not yet discussed

with project teams. Cost engineers began using the system and found that the tool did not offer the

4

ability to group data the way the template required, which had been the reason the template failed to

take off as a spreadsheet. To meet organizational policies, they had to export all data from the cost tool

to Excel, reassemble it, and re-import it, causing additional working hours, but only for those that used

the cost tool. Tool adoption lagged as a result.

Mistake #3: Picking the wrong software

Additional time spend in the “Readiness Assessment” phase also benefits the software selection

process. A cursory glance at the vendors sponsoring project controls networking events provides a view

to the breadth of options available to organizations seeking a cost tool. This diversity does not reflect

the failure to bring to market the perfect tool, but instead the subjectivity of cost engineering. There is

more than one way to calculate a forecast at completion, and indeed, a 2019 study found that two

popular tools used different methods to different results [2, p.15]. Each tool has strengths and

weaknesses that appeal to different industry players. For example, a tool designed for an owner

company will de-emphasize quantity tracking and focus on enterprise-wide reports.

Organizations should cast a wide net when evaluating vendors. It may be useful to score each vendor

based on requirements, or by what each system does well [3, p. 10]. Some useful metrics may be ease of

implementation vs. functionality, or what kind of support the vendor provides when things go wrong.

Though it may be tempting to go with a tool with a recognizable name, lesser-known developers may be

more agile or adaptable for organizations that want to take a more active hand in crafting a tool just for

them [3, p.5].

Mistake #4: Too much Automation

Automation is a doubled edged sword that both leads successful implementations and crashes

haphazard ones. Perceived time-savings come at the cost of flexibility and mandatory standardization.

Highly repeatable tasks with clearly defined rules are good candidates for automation. For example,

users may always calculate the estimate at completion for a scope of work using the cost performance

index applied to the remaining budget to complete. Cost software might introduce a “forecast method”

for users to have the tool perform this calculation on the user’s behalf.

Tasks that involve expert judgement, even if repeatable, are not good candidates for automation. That

said, complexity does not necessarily translate to manual effort. Involving end-users early in an

implementation can help guide organizations towards making the right automation decisions.

Case Study: Project Structure Based on SAP Code

An organization sought to automate the creation of a project reporting structure based on its SAP

coding, as cost engineers were responsible for maintaining the SAP structure and the organization did

not want them to “create the project twice.” The software developer tied the creation of WBS and Work

Package elements, as well as the initial project estimate, to the finance system’s structure and

implemented a push-button solution for creating the project. However, cost engineers tracked work at a

lower level than SAP in their Excel workbooks. When the end-users began using the system, there was

not enough detail to manage reporting needs within the tool. Since project structure was automated,

lower levels were not possible and users avoided using the tool as a result.

Mistake #5: Too much customization

5

Organizations customize software solutions with good intentions, but frequently these customizations

push users away rather than draw them in. Often, organizations seek to recreate existing reports and

templates without trying the functionality of the tool they adopt. Other times, they try to satisfy one

team but fail to consider the experiences of other teams, especially those working in locations apart

from the implementation team, leading to poor adoption rates in those areas.

Customizing tools have two main draw backs. The first is systemic: changing the way the tool works in

one way may have unintended consequences for other aspects of the tool. The second is isolation: each

customization locks the tool into an organization-specific instance that makes it more difficult to apply

regular bug and software fixes that may not play nicely with the new customization.

The reality is that no implementation will be entirely out-of-the-box. Successful implementations

customize as a last resort, but this does not mean that they do not customize. A complex ERP interface,

or a highly customized report, are good examples. These types of changes may help lighten users’

workload or achieve buy-in with stakeholders.

During the pilot phase of the implementation, have the team utilize the tool as close to off-the-shelf as

possible. Let the pilot team give feedback on what should change and what could stay the same. This

not only allows the organization to see if the software really needs a customization, but it also gives the

organization fluency with the tool to better describe what they want it to do to the developer.

Conclusion

Cost management software offers organizations the chance to increase productivity by de-emphasizing

the daily grind of spreadsheets and repositioning the cost engineer as a trusted advisor to project

leadership. Successful implementations involve the end-user from the beginning of the process and rely

on their expertise and trenches perspective in guiding software selection and configuration.

Bibliography

1. AACE International, “Cost Control Software Requirements,” Recommended Practice 94R-18,

AACE International, Morgantown, WV, Latest Revision

2. AbdelRazik, Mostafa, 2019, “How to Calculate Estimate at Completion at a Project Level,” EVM-

3251, AACE International Technical Paper 2019

3. Caddell, Christopher, 2017, “Framework for Evaluating Project Controls Software Systems”,

IT.2403, AACE International Technical Paper 2017.

Acknowledgements

This paper would not have been possible without the support of Omega365’s array of subject matter

experts and gracious support. This work represents the work of the author and is not representative of

Omega365’s views unless otherwise stated.

Additional Information Requested

Full Name: Jason Michael Kimbrell

Email: Jason.kimbrell@omega365.com

mailto:Jason.kimbrell@omega365.com

6

Phone: 1-713-870-0685

Company: Omega 365

Primary Author: Jason Kimbrell

Email: Jason.kimbrell@omega365.com

Phone: 1-713-870-0685

Company: Omega 365

Secondary Author: N/A

mailto:Jason.kimbrell@omega365.com

