Spread Too Thin

Managing Coefficient of Variation in Monte-Carlo Based Cost Models

Stephen Koellner September 26th, 2023

....

Speaker Bio

- Stephen Koellner Analyst/Technical Advisor
 - 5+ years of experience in federal project cost estimation
 - PLCCEs/POEs, IGCEs, Cost-Benefit Analysis, AoAs
 - ICEAA 2022 Team Achievement of the Year Award recipient
 - GAO Cost Guidebook contributor
 - Published author: Earth & Planetary Science Letters
 - BS in Mathematics Penn State University

- Augur Consulting Inc.
 - Service-Disabled Veteran Owned Small Business (SDVOSB)
 - Supporting our government-only (DOD & DOE) customer base since 2012
 - Core Competencies:
 - Cost Estimating and Analysis
 - Integrated Master Scheduling
 - Performance Management
 - Data Analytics and Visualization

Agenda

- Introduction
- Cost Uncertainty Modeling Methods
- Coefficient of Variation
- Interpretation of a WBS as a Convolution
- Behavior of Top-Level CV
- Randomly Generated WBS
- Recommendations
- Conclusion

Introduction

- **Problem:** Uncertainty easily underestimated in cost models
 - Inaccurate quantification of cost spread poses significant long-term risk
 - Characterized by a low Coefficient of Variation (CV)
 - Diagnosing issue often a difficult endeavor
- Goal: Identify modeling choices that prohibit realistic cost spread
 - Define CV as function of children elements in WBS
 - Study interactions of input level uncertainty & output level uncertainty
 - Provide modeling guidelines to cost estimators
 - Enable program managers to minimize likelihood of funding risks
- Ground Rule: Topic only covers cost uncertainty
 - Schedule uncertainty & risk events are future endeavors of this analysis

Cost Uncertainty

- AACE International RP 104R-19:
 - "... estimates are predictions of an uncertain future, it is a recommended that all estimate results should be presented as a probabilistic distribution of possible outcomes in consideration of risk."
- All cost estimates should account for risk/uncertainty
 - Credible cost models produce a range (spread) of values
 - Cost modelers must primarily think of output as a distribution, not a number
 - Often brief a snapshot of distribution/spread to clients
- Analyze Results
 - Determine if cost output logically aligns with cost inputs
 - Evaluate if top-level cost uncertainty adequately matches program status
 - Identify cost drivers and quantify their impact

Cost Uncertainty

Estimate Probability Distribution

90% Confidence Interval

*From RP 104R-19

Application of Cost Uncertainty

Top - Down Application of Cost Uncertainty			
WBS Level	WBS Element	Equation	Application of Risk
1	Total Contract Cost	Sum of Children	
2	Management	Labor Pool 1 + Labor Pool 2 + Labor Pool 3	None
2	Development Labor	Headcount x Labor Rate	None
2	Prototype Materials	Quantity * Unit Cost	None
2	Equipment	Base Cost + Complexity Factor ²	None
2	Testing Labor	Historical Cost + (Factor x Test Quantity ²)	None
2	Testing Equipment	Equipment 1 + Equipment 2	None

	Bottom - Up Application of Cost Uncertainty			
WBS Level	WBS Element	Equation	Application of Risk	
1	Total Contract Cost	Sum of Children	Composition of Children	
2	Management	Labor Pool 1 + Labor Pool 2 + Labor Pool 3	+ + +	
2	Development Labor	Headcount x Labor Rate	×	
2	Prototype Materials	Quantity * Unit Cost	×	
2	Equipment	Base Cost + Complexity Factor ²		
2	Testing Labor	Historical Cost + (Factor x Test Quantity ²)		
2	Testing Equipment	Equipment 1 + Equipment 2	+	

Application of Cost Uncertainty

Comparing Application Methods of Cost Uncertainty			
Application	Pros	Cons	
		 Limited ability to analyze cost drivers and quantify impact to 	
Tan Dawn	Simplifies cost modeling	model spread	
Top - Down	• Generally, more data is available to defend top level spread	 Assumptions on spread not directly traceable to inputs 	
		Range of cost outcomes can only be viewed at top-level	
Bottom - Up	Spread of total cost directly depends on cost inputsRange of cost outcomes can be viewed for any WBS element	 Complicates cost modeling/behavior of cost model Can more easily underestimate cost uncertainty 	

- Both types of application have unique strengths and weaknesses
 - Choice depends on agency guidance, estimate type, estimator preference
 - E.g., ROM estimates may employ use of Top-Level application
 - Augur typically develops estimates with Bottom-Level application
- Bottom-level requires approximation methods (Monte Carlo)
- Brief evaluates behavior of Bottom-Level application of spread

Monte Carlo Cost Modeling

- Calculate cost outputs with Monte Carlo sampling
 - Interactions of distributions are incredibly complex
 - "By hand" calculations impractical & inefficient
- Monte Carlo models approximate outputs efficiently
 - Sample random values from input distributions
 - Run calculation of outputs/save results from this iteration
 - Results converge to true value as over iterations

Monte Carlo Cost Modeling

$CV_X := \frac{\sigma_X}{\mu_X}$

- Why is CV important to cost estimators?
 - CV is a ratio that "normalizes" the spread of a distribution

Coefficient of Variation

- Allows comparison of data sets with differing means/standard deviations
- Commonly used to check if uncertainty is appropriately captured in model
- Higher CV indicates a wider dispersion/flatter distribution

Interpretation of WBS as a Convolution

- Work Breakdown Structure (WBS)
 - Higher level elements (parent) are sum of lower level/subordinate elements (children)
 - All WBS elements are just probability distributions
 - Convolution = Linear combination of probability distributions
- Let Z be a parent-level WBS element with n children elements: X_i

- CV of Z can be defined in terms of its children
 - Approx. computationally in using Monte-Carlo simulation SW

Top Level CV Equation

- Each X_i is a distribution with parameters:
 - r_{i,i} are correlation coefficients between X_i and X_i
 - μ_{Xi} is the expected value (mean) of distribution X_i
- The CV of parent level Z follows the below equation:

$$CV_{Z} = \frac{\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} r_{i,j} CV_{X_{i}} \mu_{X_{i}} CV_{X_{j}} \mu_{X_{j}}}}{\sum_{i=1}^{n} \mu_{X_{i}}}$$

• Equations are agnostic to types of distributions

 $Z = \sum X_i$

Verification of CV Equation

- Monte Carlo simulation approx. uncertainty distributions
 - Correlation is simplified via group strength
 - Small deviations between model & equation (depends on # of iterations)
- Formula is not useful for generating cost output
 - Cost models are more complex than simple sums
 - Equation is useful for analyzing results at WBS level

Simplified WBS (n=3)						
WBS	WBS Mean Stan. Dev. CV					
Z	300					
X1	100	10	0.1			
X2	100	10	0.1			
Х3	100	10	0.1			

Correlation Matrix				
	X1 X2 X3			
X1	1	0.25	0.25	
X2	0.25	1	0.25	
X3	0.25	0.25	1	

Behavior of Equation

- Illustrate behavior of top-level CV
 - Change one parameter of baseline for each scenario
 - Maintain perturbations proportionally
 - Identify how children elements impact parent level
- Modeling choices vs baseline updates

Simplified WBS (n=3)					
WBS	Mean	Stan. Dev.	CV		
Z	300				
X1	100	10	0.1		
X2	100	10	0.1		
Х3	100	10	0.1		

Correlation Matrix					
	X1 X2 X3				
X1	1	0.25	0.25		
X2	0.25	1	0.25		
Х3	0.25	0.25	1		

Perturbation – Increased CV of WBS Element

- Larger spread of lower elements increases parent spread
 - Double standard deviation of one child element
 - Parent CV increase from 0.071 to 0.097
 - ~37% increase in parent CV
- Intuitive result, large impact for small WBS
 - Average CV of children elements substantially higher

Baseline WBS				
WBS	Mean	Stan. Dev.	сv	
Z	300			
X1	100	10	0.1	
X2	100	10	0.1	
X3	100	10	0.1	

		tion Matrix		
X1 X2				X3
	X1	1	0.25	0.25
	X 2	0.25	1	0.25
	X3	0.25	0.25	1

Increased CV of WBS Element			
WBS Mean St		Stan. Dev.	с٧
Z	300		
X1	100	20	0.2
X2	100	10	0.1
X3	100	10	0.1

Correlation Matrix				
	X1	X2	X3	
X1	1	0.25	0.25	
X2	0.25	1	0.25	
Х3	0.25	0.25	1	

CV Calculation			
Baseline 0.0707			
Increased CV of WBS Element	0.097183		
%Δ CV	37%		

Perturbation – Large Mean (Normalized)

- Double mean of one element/scale others proportionally
 - Represents a ~12% increase to top level CV
 - Same increase as the normalized standard dev. case
 - Again, "grouping" spread to single element
 - Same top-level distribution, despite different children

Baseline WBS				
WBS Mean Stan. Dev. CV				
Z	300			
X1	100	10	0.1	
X2	100	10	0.1	
X3	100	10	0.1	

Large Mean (Normalized)			
WBS	Mean	Stan. Dev.	с٧
Z	300		
X1	200	20	0.1
X2	50	5	0.1
Х3	50	5	0.1

CV Calculation		
0.070711		
0.079057		
12%		

Correlation Matrix				
	X1	X2	Х3	
X1	1	0.25	0.25	
X2	0.25	1	0.25	
Х3	0.25	0.25	1	

Correlation Matrix				
	X1	X2	Х3	
X1	1	0.25	0.25	
X2	0.25	1	0.25	
Х3	0.25	0.25	1	

Perturbation – Large WBS

- Double size of WBS, maintain same total sum
 - Large WBS case reduced top level CV by ~13%
 - Increased model fidelity dramatically reduces spread of costs
 - More detailed and precise estimate =/= more accurate estimate
 - Example: quantity takeoff used in early planning estimate

Baseline WBS				
WBS Mean Stan. Dev. CV				
Z	300			
X1	100	10	0.1	
X2	100	10	0.1	
X3	100	10	0.1	

Large WBS			
WBS Mean Stan. Dev		Stan. Dev.	C۷
Z	300		
X1	50	5	0.1
X2	50	5	0.1
X3	50	5	0.1
X4	50	5	0.1
X5	50	5	0.1
X6	50	5	0.1

CV Calculation			
Baseline	0.070711		
Large WBS	0.061237		
%Δ CV	-13%		

Correlation Matrix				
X1 X2 X3				
X1	1	0.25	0.25	
X2	0.25	1	0.25	
Х3	0.25	0.25	1	

Correlation Matrix				
	X1	X2		X6
X1	1	0.25	0.25	0.25
X2	0.25	1	0.25	0.25
	0.25	0.25	1	0.25
X6	0.25	0.25	0.25	1

Perturbation – Stronger Correlation

- Double a single correlation coefficient
 - X_1 and X_3 are 2 times more correlated than other pairs
 - Top-level spread increased by ~5%
- Increasing correlation increases top-level CV

Baseline WBS			
WBS	Mean	Stan. Dev.	CV
z	300		
X1	100	10	0.1
X2	100	10	0.1
X3	100	10	0.1

Strong Correlation				
WBS Mean Stan. Dev. CV				
Z	300			
X1	100	10	0.1	
X2	100	10	0.1	
X3	100	10	0.1	

CV Calculation		
Baseline 0.07071		
Strong Corr	0.074536	
%Δ CV	5%	

Correlation Matrix			
	X3		
X1	1	0.25	0.25
X2	0.25	1	0.25
Х3	0.25	0.25	1

Correlation Matrix				
X1 X2 X3				
X1	1	0.25	0.5	
X2	0.25	1	0.25	
X3	0.5	0.25	1	

Perturbation – No Correlation

- Absence of correlation
 - Dramatic reduction in top level spread: ~18%
 - Effectively independent distributions being summed
- Zero correlation is unrealistic
 - Bottom-level application of dist. transfers correlation to WBS
 - Inter-dependence of common inputs creates functional correlation
- Note: negative correlation will also reduce top level CV

Baseline WBS				
WBS Mean Stan. Dev. CV				
Z	300			
X1	100	10	0.1	
X2	100	10	0.1	
X3	100	10	0.1	

No Correlation				
WBS	Mean	Stan. Dev.	CV	
2	300			
X1	100	10	0.1	
X2	100	10	0.1	
Х3	100	10	0.1	

CV Calculatio	n
Baseline	0.070711
No Corr	0.057735
%Δ CV	-18%

Correlation Matrix			
	X1	X2	Х3
X1	1	0.25	0.25
X2	0.25	1	0.25
Х3	0.25	0.25	1

Correlation Matrix					
	X1 X2 X3				
X1	1	0	0		
X2	0	1	0		
Х3	0	0	1		

Summary of Perturbations

- Cost variable/cost data characteristics: mean, standard deviation, & correlation
- Cost modeling choices
 - How much scope a single WBS element captures (grouping)
 - The level of detail of the cost model
 - Correlation applied in absence of data

Behavior of CV			
Scenario	CV	% Δ to Baseline	Note
Baseline	0.0707	0%	n=3, μ = 100, CV = 0.1, r = 0.25
High Stan. Dev.	0.0972	37%	Double one standard dev.
Large Mean	0.0729	3%	Double one mean
Large Mean (Normalized)	0.0791	12%	Double one mean, reduce mean of other elements
Large WBS	0.0612	-13%	Double WBS/maintain top-level mean
Strong Correlation	0.0745	5%	Double single correlation coefficient
No Correlation	0.0577	-18%	Model independent distributions

Randomized WBS

- Formula can be used to model cost estimator behavior
 - Randomly generate WBS's and calculate top-level spread
 - Follow best practices to provide recommendations for analysts
 - Refined simulations of WBS parameters
 - More precisely model mean, children CV's, correlation, etc.
 - E.g., Children CV from uniform distribution between 0.15 0.6
- Randomly generate WBS
 - Common values of:
 - μ , CV, & Correlation Coefficients*
- Study CV behavior at scale
 - Simulate practices of cost estimators
 - Model impacts of correlation at the WBS level

-Number of randomly generated WBS's from 2 to n (i) -Ranges for children μ , CV, and correlation coefficients

Define parameters:

-Maximum number of WBS elements (n)

Randomized WBS

- Randomly generate statistics for children elements
 - Children CV sampled from a normal distribution
 - Mean and standard dev. decrease with more children elements
 - Higher fidelity -> less uncertainty on individual elements
 - Correlation coefficients sampled from uniform distribution
 - Step down in line with USAF guidance on correlation coefficients

Randomized WBS

- Random WBS designed to mimic ACAT I cost model
 - WBS totals between \$3.6B \$5.8B
 - Choice of WBS sum is irrelevant for exercise
 - Children normalized to have sum within above range

Commonly Accepted Ranges for C

- Below are proposed ranges from USAF IT research paper
 - CV ranges by acq. milestone (based on actual cost growth)
 - Ranges are preferable since they are traceable to actual data

USAF IT Research Paper			
Estimate Type	CV Range		
Milestone A	0.41 - 0.74		
Milestone B	0.31 - 0.54		
Milestone C	0.23 - 0.32		

- Ranges & randomized WBS results used for WBS size rec.
 - Compare at-scale CV behavior with ranges to make rec.
 - CVs should not be the only statistic analyzed for model health

Recommended WBS Ranges			
Acquisition Phase	Rec. WBS Size		
Milestone A/High Uncertainty	2 - 14 Lowest Level Elements		
Milestone B/Medium Uncertainty	6 - 25 Lowest Level Elements		
Milestone C/Modest Uncertainty	24+ Lowest Level Elements		

Ratio of True CV to Weighted Avg CV

- Ratio curve based on following modeling best practices
 - Significant deviations from this curve indicate lack of correlation
 - E.g., a WBS with 20 elements w/ratio of 0.3
 - Ratio should be ~0.55 -> correlation coefficients too low

CV in Cost Estimating Applications

- Analyze output CV as a sanity check for cost model spread
 - Check ratio of top-level CV and weighted AVG CV w/WBS size
 - Check dollar value spread of outputs for reasonableness
 - CV should NOT be the only metric used for evaluation
- Observable CV behavior provides cost modeling insight
 - Early ROM estimates need small WBS/top-level risk application
 - Ensure appropriate correlation is being applied to input variables
 - WBS size should correlate with program maturity and level certainty
 - Don't over sharpen the pencil with engineering build-ups
- Leadership should push for higher spread in early estimates
 - Funding requests need accurate projections of potential cost growth
 - Underestimated spread reduces contingency in risk informed cost models

Conclusion

- Insufficient cost spread in Monte-Carlo based cost models
 - CV equation provides insight to understanding top-level CV behavior
 - Provided rules of thumb/cross-checks for diagnosing cost models
- Top-level CV dominated by WBS size and correlation
 - Models w/out correlation are underestimating spread
 - WBS size should fall within ranges based on lifecycle/certainty level
 - Overly detailed WBS injects overoptimism unless correlated properly

Recommended WBS Ranges			
Acquisition Phase	Rec. WBS Size		
Milestone A/High Uncertainty	2 - 14 Lowest Level Elements		
Milestone B/Medium Uncertainty	6 - 25 Lowest Level Elements		
Milestone C/Modest Uncertainty	24+ Lowest Level Elements		

THANK YOU

