
“Cracking the Code”
Demystifying Programming Languages
for Data Analytics

Kyle Ferris, John Maddrey

Advanced Analytics Research Group
Tecolote Research, Inc.

Presentation Outline
Unveiling the Shroud of Complexity

The “Problems” with Programming

Addressing the Problem

Programming Languages: Give Me the BLUF!

Tackling the Problem

Conclusion

Machine Learning

Artificial Intelligence

Big Data

Cool Buzzwords…
▪ But really, how well do we understand these concepts?

▪ Do we have a good grasp of their definitions, methodologies, and
applicability to our work?

▪ How many of us know how to code a simple function… much less
develop a machine learning algorithm?

▪ As the acquisition community works to incorporate data
science into it’s body of knowledge, acquisition professionals
should establish a baseline understanding of their own
programming capabilities

Unveiling the Shroud
of Complexity

Why is Programming So Scary?

▪ From anecdotal experience:
▪ “A computer language? I tried learning French in High

School and that didn’t go very well…”

▪ “What are all those random words in parentheses?
Why are they all indented differently?”

▪ “How long will it take me to memorize all these blocks
of code?”

▪ “Don’t I have to get a degree in computer science to
really learn how to program? I don’t know if I have the
time to become a software engineer”

▪ At some point in time, we have all thought
along these lines

Demystifying Computer Programming

▪ “A computer language?”
▪ Programming languages are easier to learn than human languages. There is certainly a “vocabulary”

(e.g., objects) and “grammar” (e.g., syntax). However, a programming language provides explicit
commands to facilitate the execution of computational tasks, without all of the cultural or historical
nuance you might expect from, say, French

▪ “How long will it take me to memorize all these blocks of code?”
▪ You don’t need to. Programming isn’t centered around rote learning. It’s more important to understand

the objective you are trying to accomplish, and the types of commands you can use to accomplish this
objective. If you can’t remember the code syntax, just Google it!

▪ “Don’t I have to get a degree in computer science to really learn how to program?”
▪ Absolutely not. This is akin to saying “Don’t I have to get an English degree to really learn how to write

stories?”. A formal education in computer science will certainly help, but programming is a technical skill
that anyone can learn!

Demystifying Programming Languages
▪ A common misconception of would-be programmers is that it can take numerous years

to develop proficiency in a specific language
▪ Following this rationale, it’s easy to believe that learning a variety of programming languages can take

decades

▪ After all, why else do software engineers or data scientists command such high salaries?

▪ Learning to program is certainly not “easy”, but it’s also not as time-consuming as you
might think:

Learning Style Definition Duration

Casual Learner “I’m not in a rush, just learning at a consistent pace” 2-3 years

Career Advancer “This will help me with my work” 1-2 years

Career Changer “I need this to qualify for a new job” 6 months – 1 year

Coding Bootcamp “I’m drinking water from a fire hose!!!” 3 months

Some industry recognized “rules of thumb” for developing programming proficiency

The “Problems” with
Programming

Yes - Programming Can Be Difficult

▪ But… what actually makes programming languages difficult
to learn?

▪ Several factors contribute to this:
▪ Confusion about which learning approach to follow

▪ Not understanding which available resources are relevant for you

▪ Starting with a code base or a programming concept that’s too
advanced

▪ Attempting to memorize code vs. understanding the underlying
commands being executed

▪ In short, learning how to program can feel overwhelming!

Programming in a Secure Environment

▪ Navigating enterprise IT requirements can be a challenge
▪ Software requirements for an integrated development environment

(IDE) might not align with approved software versions or
configurations as defined by IT policies

▪ Certain open-source packages/add-ons may not be allowed, which can
limit analysis and/or development activities

▪ Similarly, enterprise IT architecture might not be properly configured
to facilitate developer privileges needed for open-source data
collection

▪ Open-source accessibility vs. cybersecurity requirements can
often be at odds

Addressing the
Problem

A Framework to Address Anxiety
Example Problem Statement:

I have unstructured data that I want to analyze and understand

I have customers that want me to “tell a story” with the data

I’m new to programming, and have anxiety around being able to use a programming
language to structure the data and understand it

High Level Solutions:

As with anything, structure your approach. What is your end goal for this data?

Determine what about your problem requires a programming language vs. what can
be solved through other known tools

Rely on your skill sets, rather than the skill sets you think your customer wants.
Manage expectations – i.e., “under-promise and over-deliver”

Addressing the Problem

▪ It’s important to note that not all data analysis problems call for the utilization of a
programming language
▪ As analysts, remember that we are ultimately responsible for developing practical solutions and reports,

with no obligation to develop fancy models that may end up being unnecessary

▪ No matter what tools you end up using, always start with a question to answer

▪ One common pitfall of the budding data scientist is to provide awesome data driven
answers to questions no one is asking
▪ Generally, it is better to have a question in search of data, then have data in search of a question

▪ Your analysis should always be centered on your ability to answer a given question. Let that be your
anchor

▪ Understanding the problem and your ability to solve it is generally agnostic to any
programming language or data you can use

Tackling
the Problem

Get to Work!
▪ Lets assume you now have a well understood question, and you have access to

unstructured datasets that can help you answer it

▪ You may think that structuring datasets and preparing your analysis using a programming
language looks something like this:

▪ Looks efficient, right?
▪ In practice, analytical programming is never this simple…

… But Work Smart
▪ Generally speaking, a programming language is not the silver bullet for your task

▪ No matter what tool you use, “garbage in = garbage out”

▪ Sometimes simple tools such as Excel are the best way to analyze your data

▪ If using a programming language makes sense, other options exist to help structure and
analyze large datasets more efficiently
▪ Don’t reinvent the wheel! A large variety of pre-developed packages can help you run various analyses

quickly and efficiently

▪ Despite your proficiency in a language, your patience to code will most likely be tested. Expect
roadblocks, as a majority of time spent coding involves debugging

▪ Regarding programming syntax, don’t dwell on what you don’t know
▪ If you’re unsure about a code’s syntax, remember that Google is your friend!

▪ Online communities like Stack Overflow often have an answer to your question

▪ The recent advent of Large Language Models (LLMs) such as ChatGPT likewise offer assistance with code
templates and debugging

Programming for Data Analytics
▪ Numerous programming languages offer similar tools for building, analyzing, and

modeling datasets
▪ Try not to fret over the right language to use. Again, focus on the question at hand

▪ Before choosing a language to use, start with a few basic steps:
▪ Visualize your data. A scatterplot is worth a thousand data points!

▪ Evaluate the statistics of your dataset (i.e., mean, standard deviation, coefficient of variation, 𝑅2 , etc.) to
determine its usefulness

▪ At this point, we can choose the language that best suits our analytical requirements
▪ Does data need to be structured to facilitate dynamic visualization?

▪ Do we need to develop an automated model that calculates numerous iterations, and aggregate the
results for predictive analytics?

▪ Do we need to develop a dashboard or app that allows end-users to filter data inputs/outputs or upload
unique datasets for automated analytics?

Programming for Data Analytics

Example Problem:

I have unstructured cost data on HVAC components that I want to normalize and analyze. My
customer wants me to use this historical data to develop a predictive model for future HVAC
component costs, complete with a risk calculation that aggregates 5000 unique iterations of
defined uncertainty/risk parameters

Programming for Data Analytics

Example Solution – Step 1

I realized I could use Excel to normalize and structure my data using a pivot table, which gave
me a clear picture of historical component types, the year they were developed, and the
associated development costs incurred

Programming for Data Analytics

Example Solution – Step 2

I came to the conclusion that a predictive model with 5000 automated uncertainty iterations
required an algorithm too complex and time consuming for Excel. As a result, I imported my
structured Excel data as a CSV file into RStudio, and developed an automated iteration
algorithm using tools provided by R’s “purrr” package

Programming for Data Analytics

Example Solution – Step 3

I visualized my predictive model with calculated risk using R’s “ggplot2” package, but found the
visualizations to be too “busy”. As a result, I decided to pipeline my R script into Power BI to
develop a dynamic dashboard, complete with a data slicer that visually compares all child-level
historical and projected HVAC component costs by individual fiscal years

Programming
Languages:
Give Me the BLUF!

So Many Choices…

What are the most popular programming languages?

What language is best suited for the data I work with?

What languages are my customer using and/or asking for?

Are there specific skills I need to become proficient in a certain language?

Which languages are open-source? Which are COTS?

Am I allowed to use certain open-source languages within my organization?

▪ We’ve discussed some challenges associated with learning to program, high level ways to
address these challenges, and actionable steps we can take towards understanding how
to incorporate programming into our analytical work

▪ This begs the question – based on my requirements, what language should I use?

▪ Some related, and important, questions include:

The “Quick” Answers
▪ There are a wide variety of programming languages, each generally comparable in

capabilities yet well suited for uniquely specialized tasks

▪ For data analysis, the most popular are arguably SQL, Python, and R
▪ SQL is designed for database management, analysis and reporting

▪ Python is ideal for generalized workflow automation, data analytics and machine learning

▪ R is ideal for mathematical/numerical analysis, modeling and algorithm development

▪ It is important to note, however, that all of these languages are practical and useful,
with each featuring unique benefits and limitations
▪ In addition to your objective, the decision to use one language over the other often comes down to

dedicated resources, availability, and customer preference or familiarity

Structured Query Language (SQL)
When it comes to database management and reporting, SQL is the industry standard

▪ Dynamic relational databases are necessary for structuring large volumes of data, making a database language
such as SQL very important

▪ SQL is a “non-procedural language”. This means that it does not require the use of traditional programming logic,
making SQL more straightforward and accessible compared to other languages

▪ Anyone managing, manipulating, or analyzing data from a relational database should be proficient in using SQL

IF/ELSE statement in SQL to check if the text string
“Sample SQL text” contains the substring “SQL”:

IF (CHARINDEX ('SQL',
'Sample SQL text') > 0)

PRINT 'TRUE'
ELSE

PRINT 'FALSE'

Python
Python is arguably the most popular programming language across all STEM fields

▪ Python is often the first choice for tasks including software development, data engineering, machine learning,
and data analytics

▪ Python’s appeal is in it’s general usability, flexibility and simplicity – without sacrificing computational power.
Whether you need to develop web-based applications or perform predictive analytics, Python can help you

▪ Python is “object-oriented”, meaning functions and workflows are centered around defined objects with
assigned values. This makes Python workflows incredibly flexible and intuitive

IF/ELSE statement in Python to check if the text string
“Sample Python text” contains the substring “Python”:

if 'Python' in 'Sample Python text':
print ('TRUE')

else:
print ('FALSE')

R
R is a comprehensive programming language that supercharges mathematical operations

▪ R specializes in large and complex numerical data sets, especially powerful when performing mathematical
analysis and modeling

▪ Similar to Python, R is an object-oriented language with numerous benefits – including open-source
availability, large community of users, high quality visualizations, and impressive algorithmic capabilities

▪ R is quickly rising the ranks as one of the most popular programming languages for numerical data analysis,
most utilized within the mathematics, economics, physical engineering, and medical communities

Conclusion

Lessons Learned
▪ Learning to program can be challenging. Learning to apply programming skillsets can be

even more challenging
▪ However, don’t let this discourage you!

▪ The time you dedicate to developing programming proficiency will pay huge dividends through amazing
opportunities for advanced analytics and modeling (… not to mention highly marketable skillsets!)

▪ Motivate yourself by aligning learning to the skillsets you need
▪ When starting out, don’t focus on trying to learn advanced programming concepts as those skillsets come

with time and practice. Walk before you run!

▪ Learn what is practical for you. For example, you don’t need to learn how to develop complex machine
learning algorithms if you’re primarily concerned with data visualization

▪ Recognize small achievements that lead to growth over time
▪ “Rome wasn’t built in a day”

▪ Don’t set unrealistic goals. No one is expecting you to become a programmer overnight!

Lessons Learned
▪ Learning how to work with unstructured data and new programming languages is a

process
▪ As you develop programming competencies, you’ll gradually start to understand more advanced concepts

as well as how to incorporate them into your work

▪ Don’t use high stress “hot tasks” to practice programming capabilities. Start with something low stakes,
so you can take the time you need to develop a quality product

▪ Be mindful of your own interests and map out what you want to get out of programming
▪ After all, the best way to get good at something is to feel fulfilled with the work involved

▪ Make sure to ask for help!
▪ Don’t be afraid to “suck” at something new

▪ The only “bad” question is the one you don’t ask. Also, search engines don’t judge ☺

▪ Online communities most likely have an answer to your questions, especially if you’re a beginner

References

Tom Dalling. Programming for Beginners (2020 edition).
https://www.programmingforbeginnersbook.com/blog/expand_your_programming_vocabulary/#:~:text=A%20List%20of%2
0Basic%20Programming%20Terms%201%20algorithm,often%20used%20to%20surround%20text.%20...%20More%20items

“How Long Does it Take to Learn Code?”. Code Academy.
https://www.codecademy.com/resources/blog/how-long-does-it-take-to-learn-to-code/

Nicholas Gallinelli. “10 Best Data Science Programming Languages”. Flatiron School.
https://flatironschool.com/blog/data-science-programming-languages/

https://www.programmingforbeginnersbook.com/blog/expand_your_programming_vocabulary/
https://www.programmingforbeginnersbook.com/blog/expand_your_programming_vocabulary/
https://www.codecademy.com/resources/blog/how-long-does-it-take-to-learn-to-code/
https://flatironschool.com/blog/data-science-programming-languages/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

