#### Foundational Cost Models

Paul Franklin

Operations Research Analyst, Navy Engineering Logistics Office

Originally presented at the 2023 ICEAA Workshop, San Antonio









## Outline









RESEARCH **OBJECTIVE** 



DATA OVERVIEW



**CER REPOSITORY** 



**LABOR** APPROXIMATION **ANALYSIS** 

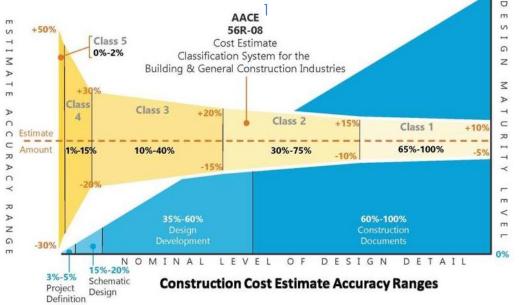


**UNCERTAINTY** ANALYSIS



**RECOMMENDATIONS** 






#### State of the Art

- Low-level equipment, material, and labor cost data is difficult to find or expensive to acquire, square footage is the default
- Available data is already totaled

3. Little uncertainty distribution guidance, so estimators rely on "Contingency

Factors"








## Research Objectives



Improve the accuracy of DOD construction estimates and expedite them by...

- Compiling a repository of unit cost relationships
- Exploring ways to extract time-dependent costs (especially labor)
- 3. Identifying uncertainty distributions to apply







## Data Sources

- Army Corps of Engineers' Programming and Execution (PAX) System Newsletter2
- 2. Army Corps of Engineers' Engineering Pamphlet (EP) 1110-1-83
- 3. NELO PMO-Commissioned Studies
- 4. Internet Research and quotes
- 5. Craftsman National Electrical Estimator 20224
- 6. OASD(S) Military Construction Status Reports to Congress<sup>5\*</sup>

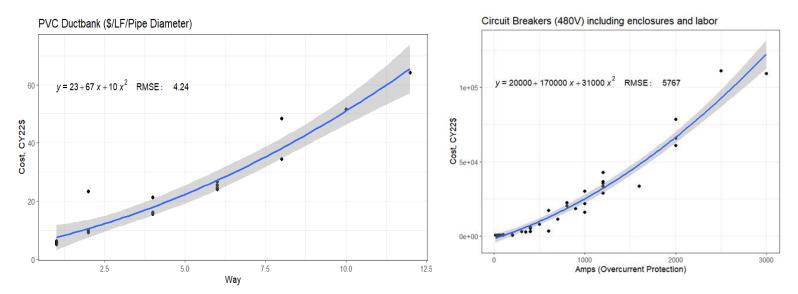


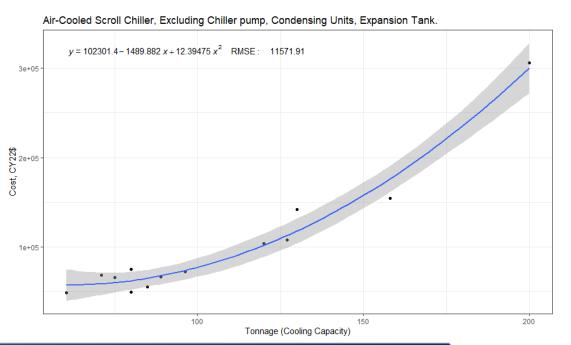












## CER Repository Methodology

- 1. Explore traits (predictors) already listed in the databases.
- 2. Consider a variety of fits, linear, non-linear, multiple regression, etc.
- Choose models on the basis of visualization and Root Mean Squared Error (RMSE) rather than R-squared. 6,7,8









# CER Repository Results

MORE THAN FIFTY STRONG UNIT COST RELATIONSHIPS



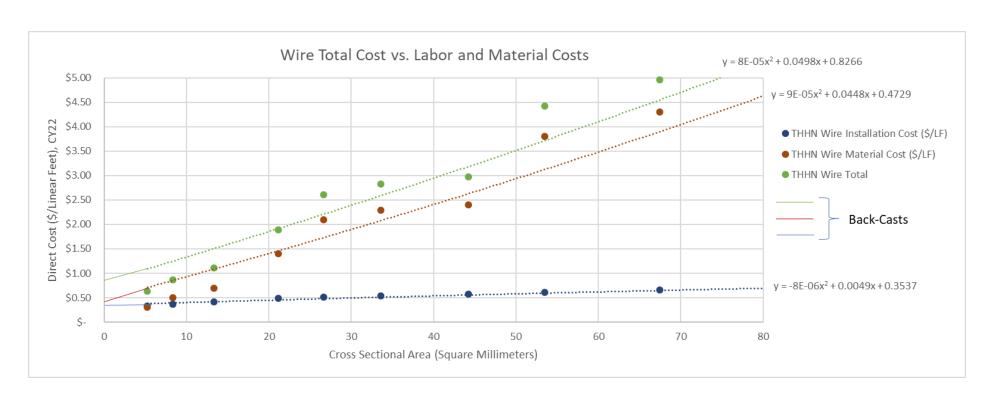


# CER Repository Takeaways

- a) Estimates could provide population means
- b) Faster than soliciting quotes, cheaper than commercial databases
- c) Applicable to multi-purpose facilities or renovation
- d) Key limitation: no way to adjust duration of labor

| CER Category                    | Count |
|---------------------------------|-------|
| HVAC                            | 6     |
| Power Distribution              | 19    |
| Power Generation                | 6     |
| Lighting                        | 3     |
| Structural                      | 4     |
| Liquid Storage                  | 2     |
| Lift Equipment and<br>Transport | 4     |
| Plumbing                        | 7     |
| Other                           | 4     |





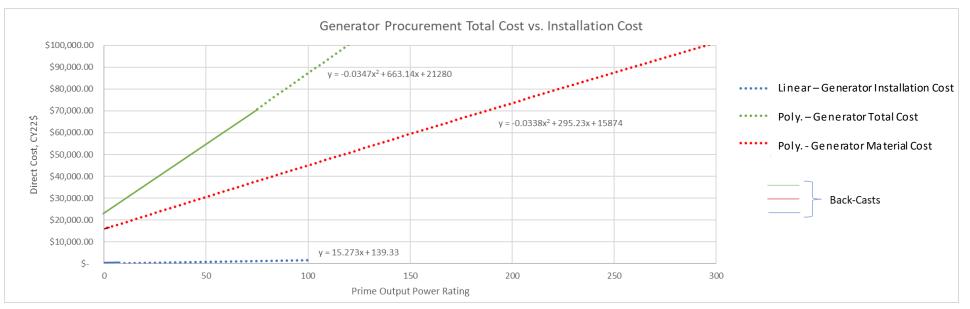

# Labor Approximation Methodology

- According to Elbeltagi, labor constitutes 30-50% of construction expenses.<sup>9</sup>
- One Navy project estimate showed
   35% of direct cost would be labor.
- Hypothesis: back-casting to the intercept may isolate approximate labor cost underlying composite expense data.



## Labor Approximation Results




- Intercepts behave as expected
- Difference may be due to manufacturing labor: 0.8266-0.4729=.3537





#### More Generator Research Needed





- Intercepts far overestimate labor necessary to build and install a generator at kW=1, likely due to different manufacturing processes and accessories.
- Stick to range of x-values

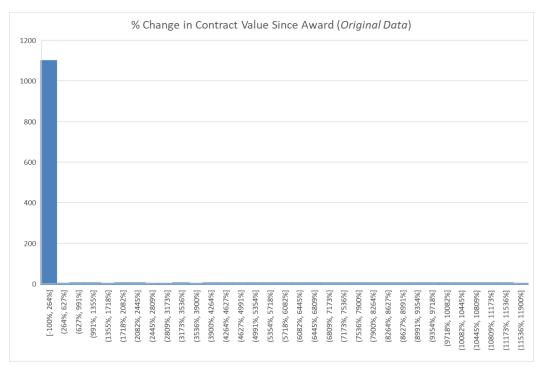




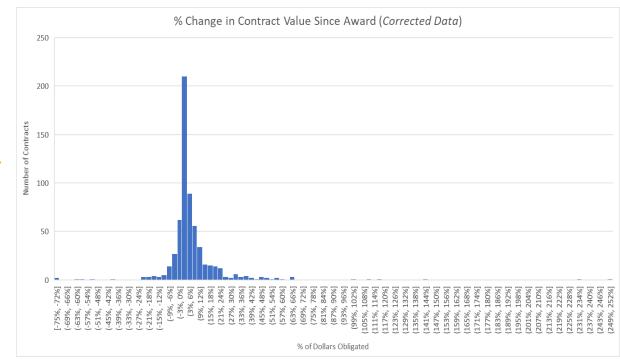
## Labor Approximation Takeaways

- There's mixed evidence as to whether back-casting is a viable way to extract labor data.
- Physical attributes (size, weight) may be more appropriate for this technique than performance attributes (power output, horsepower, etc.)
- When in doubt, consider trying the Elbeltagi factor (30-50%)









## Uncertainty Analysis Data Introduction



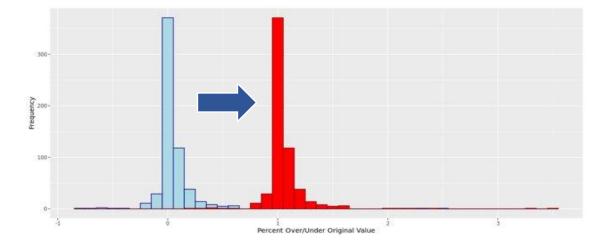




#### After



- MILCON status reports by OASD(S) form the backbone of the uncertainty analysis. Corrected with the Federal Procurement Data System (FPDS)
- Histograms can reveal whether data needs attention




#### Uncertainty Analysis: Put a Name to a Face

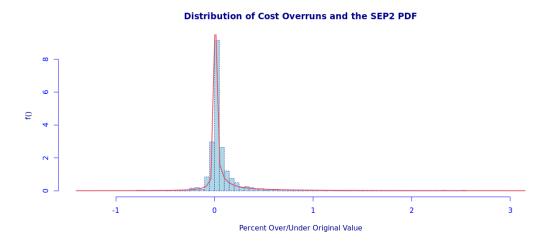
1. Study the distribution of contracts exceeding their initial values per congressional reports such that

$$Percent Cost Overrun = \frac{(Final \, Value - Original \, Value)}{Original \, Value}$$

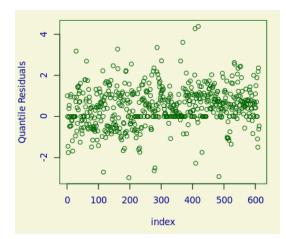
2. Shift to apply distributions on positive real line {0,lnf.}



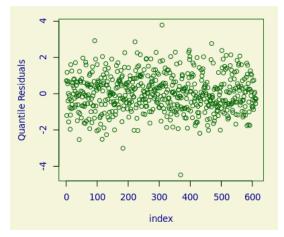
3. Consider >50 distributions, select via Akaike's Information Criterion (AIC).<sup>10</sup> Which distribution is best?







## Best Fit: SEP Type II

- Family: Skew Exponential Power (SEP) Type II.<sup>11</sup>
- AIC: -1949 (Least amount of data information lost among attempted curves)
- n=612 completed Military Construction contracts

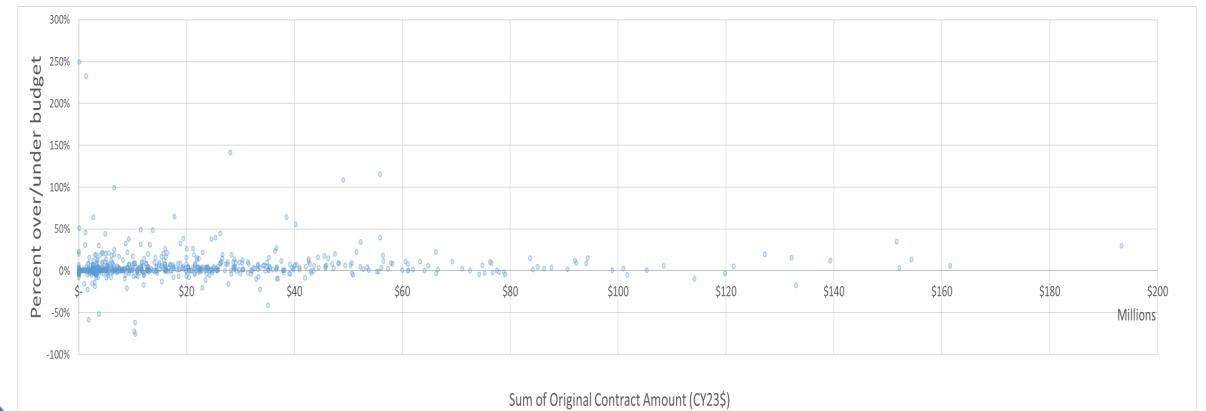

It's the best fit, but is it a good fit? Residuals suggest yes.



#### **Actual Residuals**



#### Simulated Residuals








# Smaller Contracts Have a Wider Range





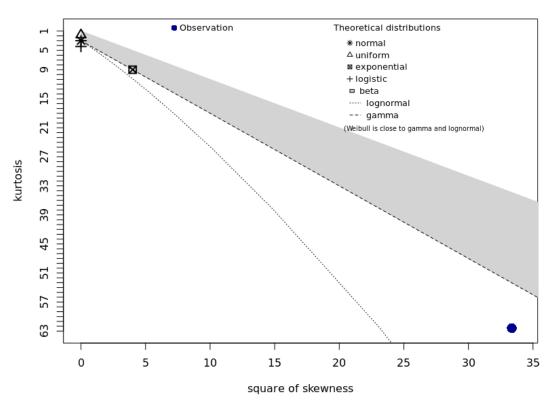




## Uncertainty Analysis Takeaways

- Parametric models suggest DOD construction errors tend toward a Skew Exponential Power (II) Distribution.
- Evidence that we should not always default to lognormal.<sup>12</sup>
- Combined with our CERs, we have several uncertainty parameters for our simulations.
- Small contracts have a wider uncertainty range.






## What's next?

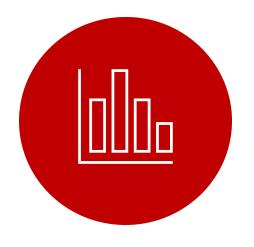
- More potential CERs in these databases
- Replicate uncertainty analysis with contract schedules
- c) Explore switch from raw to orthogonal polynomials
- d) Plot Skewness vs. Kurtosis for more families (Cullen and Frey Chart<sup>14</sup>)

With these methods, we could more definitively state whether costs are SEP distributed and gain schedule insight.

#### **Cullen and Frey graph**








# Recommendation Summary









PLOTTING CERS CAN LOCATE
CENTRAL TENDENCIES AND SAVE
TIME VIA INTERPOLATION

USE CAUTION WHEN
APPROXIMATING LABOR VIA
BACK-CASTING

APPLY EMPIRICAL OR SEP II
DISTRIBUTIONS TO OUR
CONSTRUCTION SIMULATIONS





#### References

- 1. Association for the Advancement of Cost Engineering International. Cost Estimate Classification System As Applied in Engineering, Procurement, and Construction for The Building and General Construction Industries 56. 56R-8th ed. Vol. 56. 124 vols. Recommended Practices. Fairmont, WV: AACE International, 2020. August 7, 2020.
- 2. Army Corps of Engineers, Programming Administration and Execution (PAX) System Newsletter 3.2.2 Army Facility Unit Costs §. Army Facilities Pricing Guide (2021). https://www.usace.army.mil/Cost-Engineering/PAX-Newsletter-322-Army-Facility-Unit-Costs/.
- 3. Army Corps of Engineers, EP1110-1-8 Construction Equipment Ownership and Operating Expense Schedule §. EP1110-1-8 (2020), EP1110-1-8 Equipment Rates (army.mil).
- 4. Tyler, Mark C. 2022 National Electrical Estimator. Carlsbad, CA: Craftsman Book Company, 2021.
- 5. Office of the Assistant Secretary of Defense for Sustainment, Military Construction Status Report § (2022). https://www.acq.osd.mil/eie/FIM/FIM Library.html.
- 6. Ford, Clay. "Is R-Squared Useless?" University of Virginia Library Research Data Services + Sciences. University of Virginia Library, October 17, 2015. https://data.library.virginia.edu/is-r-squared-useless/.
- 7. Book, Stephen A., and Philip H. Young. "The Trouble With R<sup>2</sup>." *Journal of Parametrics* 25, no. 1 (July 2006): 87–114. https://doi.org/10.1080/10157891.2006.10462273.
- 8. Spiess, Andrej-Nikolai, Natalie Neumeyer. "An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach". BMC Pharmacology. 2010; 10: 6.
- Elbeltagi, Emad. "Chapter 4: Cost of Construction Labor and Equipment." Essay. In Cost Estimation In Construction Projects, 67–67. mepwork.com, 2021.

Accessible here: https://www.mepwork.com/2021/04/project-cost-estimation-pdf.html

10. Stasinopoulos, D. Mikis, and Robert A. Rigby. 2007. "Generalized Additive Models for Location Scale and Shape (GAMLSS) in R". Journal of Statistical Software 23 (7):1-46. https://doi.org/10.18637/iss.v023.i07.

This is the R package used to perform the analysis. Also see <a href="https://www.gamlss.com/wp-content/uploads/2018/01/DistributionsForModellingLocationScaleandShape.pdf">https://www.gamlss.com/wp-content/uploads/2018/01/DistributionsForModellingLocationScaleandShape.pdf</a> for a full definition of the SEP Type II distribution.





### References

- 11. Azzalini, Adelchi. 2020. "Further Results on a Class of Distributions Which Includes the Normal Ones Looking Back". Statistica 80 (2):161-75. https://doi.org/10.6092/issn.1973-2201/10421.
- 12. Kunc, Wendy, Kathy Watern, Stephen Barth, Douglas Comstock, Christian Smart, Duncan Thomas, John Fitch, Alfred Smith, and Jeff McDowell, Joint Agency Cost Schedule Risk and Uncertainty Handbook § (2014).
- 13. Rossi, Riccardo, Andrea Murari, Pasquale Gaudio, and Michela Gelfusa. "Upgrading Model Selection Criteria with Goodness of Fit Tests for Practical Applications." Entropy 22, no. 4 (2020): 447. https://doi.org/10.3390/e22040447.
- 14. Cullen Alison C and H. Christopher Frey. 1999. Probabilistic Techniques in Exposure Assessment: A Handbook for Dealing with Variability and Uncertainty in Models and Inputs. New York: Plenum Press.

Data from this talk is available upon request: paul.b.franklin11.civ@us.navy.mil





## Acknowledgments

 Special thanks to my wife Kathryn and colleagues Erika Vaughan, Raj Raman, Colin Shores, John Georges, and Babak Damadi



