Job Shop Scheduling for Construction Projects with Repetitive Activities

Applicability, Adequacy and Versatility

By

Prasad Velaga, PhD President, Optisol LLC College Station TX Email: prasad@optisol.biz

One of the major challenges in a construction project Creating a meaningful schedule and finding opportunities for improving project duration and project management.

Methods for scheduling projects include: Critical Path Method - The most widely used method for scheduling projects over 7 decades Critical Chain Last Planner System Linear scheduling (including location-based scheduling) Finite capacity scheduling Etc.

Critical Path Method (CPM)

CPM is the first scientific, generic method developed for scheduling projects and is most widely used in project management world.

Salient features of CPM include:

- Supporting effective project management
- Estimation of project completion time
- Documentation of precedence relations among activities
- Prediction of workflow
- Identification of critical activities
- Determination of floats which can be used for dealing with uncontrollable variation
- Helping with communication of project plans.

A vast majority of project management software use CPM for project scheduling.

Input data for CPM:

- Activity list and activity durations
- Precedence relations among activities
- Temporal constraints on start or finish times of activities.

CPM Drawbacks:

- Difficulty to comprehend the workflow of a project through CPM schedule
- Unable to show activity schedules location wise and resource wise for a better understanding of the project
- Unable to exploit any special structure of precedence network for improvement purpose
- No reliable guidance to the workers over short periods
- Less reliable estimation of project completion time
- Lack of support for what-if analysis of schedule with respect to production rates.

Location-based scheduling (LBS) methods for construction projects with repeated activities

- LBS methods are better suited for scheduling construction projects with repeated activities.
- Successful applications of LBS in projects predate the development of CPM in late 1950s.
- Propagation of LBS methods is curtailed by the popularity and extensive use of CPM.
- LBS was developed as a simple graphical method for scheduling such projects and for displaying the schedule in a concise and coherent manner.
- LBS methods involve creation of a time location chart that displays the entire project schedule on a single page through straight lines or zig-zag lines for resources or horizontal bars for activities.

The Origin of Location-Based Scheduling in Manufacturing Environment

- In early 20th century, a Polish professor Karol Adamiecki developed a graphical method called Harmonogram to schedule production of a set of products in a production system in manufacturing environment without violating resource constraints and technically imposed precedence constraints among production operations.
- Harmonogram displays production operations as vertical bars on a chart with operations on X-axis and time on Y-axis.
- Harmonogram is more sophisticated than the graphical scheduling method developed by Henry Gantt for production scheduling.

Karol Adamiecki's Harmonogram Representing A Production Schedule

Karol Adamiecki's Harmonogram

- Preparation of Adamiecki's harmonogram involves use of paper strips (vertical) each of which represents a production operation.
- Adamiecki considered production rates as a leverage to get an optimal production schedule and higher productivity.
- Adamiecki's production scheduling method was an innovative, manual production scheduling method during his time.

Adamiecki is one of the pioneers of production scheduling and control.

Location-based scheduling (LBS) method

- LBS is a graphical method involving creation of a time-location chart for generating and displaying a project schedule.
- LBS is similar to the production scheduling method developed by Adamiecki in manufacturing environment.
- Adamiecki's method can be taken as the foundation of LBS approach in project environment.
- LBS is simpler and more appropriate than CPM to create a meaningful schedule for projects with repetitive activities.
- LBS usually generates a project schedule without resource overloading in an automatic fashion.

Location-based scheduling (LBS) method

- LBS optimizes the sequencing and coordination of activities based on the spatial information of activities.
- Work progress in any location can be tracked on a horizontal line in time-location chart of LBS.
- Improvement of workflow and project duration can be seen as a direct consequence of production rates of resources.
- It is much easier to find opportunities for improving work flow and duration of a project.

The first recorded successful application of LBS method took place in Empire State Building project in 1941.

Special features of time-location chart used in LBS

- Easy to create in comparison to Gantt chart of CPM schedule
- Shows the entire project schedule in a single view
- Shows all activities at every location on a separate horizontal line
- Shows workflow for each resource (trade)
- Shows the full schedule of each trade
- Helps people comprehend a project schedule very easily.

Special features of time location chart used in LBS

- Enables recognition of interactions and constraints between the activities and optimal sequencing of activities for having a smooth flow of work and higher efficiency
- A vertical straight line or a zig-zag line representing a repeated activity shows production rate of the corresponding resource
- The effect of changes in production rates can be seen quickly on this chart.

Job Shop Production and A Construction Project with Repetitive Activities

Similarity between job shop production and a construction project with repetitive activities

- It can be seen from Karol Adamiecki's work on the development of a method for scheduling production in a manufacturing system and its similarity with LBS for construction projects.
- Production system considered by Adamiecki can be seen as a simple example of job shop.
- From scheduling point of view, production of a set of products in a job shop is comparable to a construction project in which activities are repeated across locations.
- In this comparison, each product is like a location, a production operation is like an activity repeated in several locations and a machine required for a production operation is like a trade.

Small differences between job shop production and a project in terms of physical flow of entities

- In job shops, resources (machines) are stationary and components move through resources. In contrast, locations are stationary and resources (trades) move through locations.
- Location sequence is fixed in a project while products/jobs are to be optimally sequenced in production.
- These small differences pose no serious problem in adopting job shop scheduling methodology for a construction project.

From logistics point of view, every project with repetitive activities can be viewed as job shop production.

Powerful scheduling methodology for general job shop production

- Several scheduling software vendors developed powerful, scientific scheduling logic for scheduling production operations in a complex job shop.
- The logic is known as Finite Capacity Scheduling (FCS) or Advanced Production Scheduling.
- It schedules the entire production subject to finite capacity of resources (like machines, workers, etc.) and all other relevant constraints.
- The same scientific, rigorous logic can be easily adopted for efficient scheduling of activities in any construction project subject to all relevant constraints.

A powerful, innovative job shop scheduling solution from Optisol LLC for construction projects

A powerful, innovative scheduling solution for construction projects with repetitive activities

- Optisol LLC adopted software-aided job shop scheduling approach with a few modifications for efficiently scheduling construction projects with repetitive activities.
- This approach creates an optimal schedule for such projects quickly and easily and it graphically displays the schedule like time-location chart of LBS.
- It is more rigorous than CPM and carries the benefits of both CPM and LBS for construction projects with repetitive activities.

Objectives considered in the new scheduling solution

- 1. Create a schedule for a specified project completion date
- 2. Ensure smooth flow of work (continuous work) for each trade without a need for waiting between successive activities
- 3. Create time buffers in the schedule without any increase in project duration.
- It is not easy to achieve these objectives using CPM for schedule generation
- LOB methods naturally aim at the first two objectives.

Variables in scheduling problem for construction projects

- Time points at which trades start respective activities in the first location
- Crew sizes for trades
- Weekly calendars for trades.

Constraints considered in job shop scheduling approach to construction projects

- Precedence relations among activities in each location
- Precedence relations across locations
- Temporal constraints on activity start times
- Maximum allowed crew size for each trade
- The longest possible calendars for trades.

An Optimal Schedule of A Project with Time Buffers

Horizontal bars of yellow color represent time gaps between successive activities in a zone. Bars of other colors represent activity durations.

Fast, extensive and reliable what-if analysis of project schedule mostly by drag-drop operations

What-if analysis with respect to changes in the data such as:

- A change in the size of a crew for the entire project duration or for selected periods
- A change in crew available time (weekly calendar) for the entire project duration or for any selected periods
- A change in the available times of materials or drawings
- Etc.

Project schedule can be revised quickly and accurately in response to any unavoidable impact of uncertainty.

THANK YOU

for attending this session

