# Optimization of Precast Construction Planning and Execution Using BIM



#### Maulik Poriya

Co-Founder & CTO VARMINE CONTECT PVT LTD

#### Dr. Jyoti Trivedi

Program Chair MCEM, Faculty of Technology, CEPT University Ahmedabad

### VARMINE Project Controls

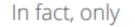
#### AGENDA

- 1. DIGITAL TRANSFORMATION OF CONSTRUCTION
- 2. TYPICAL CHALLENGES OF CONSTRUCTION INDUSTRY
- 3. DIGITAL TRANSFORMATION IN CONSTRUCTION ACROSS THE GLOBE
- 4. WHAT IS BIM?
- 5. PRECAST CONSTRUCTION USING BIM PROCESS
- 6. CHALLANGES & SOLUTIONS FOR PRECAST USING BIM



#### DIGITAL TRANSFORMATION OF CONSTRUCTION

## **VARMINE** Project Controls $E \times P$


## THE STATE OF DIGITAL TRANSFORMATION IN CONSTRUCTION



of construction companies worldwide said this is a key priority to drive much needed changes to their processes, business models and/ or ecosystems.



of companies in stages\* 1 and 2 out of 5.





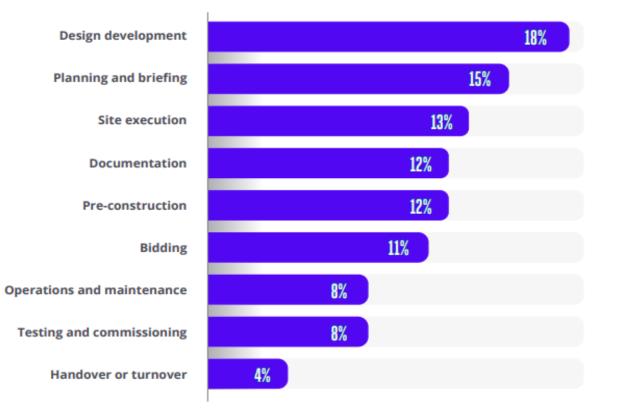
of companies are well on their way to succeeding on their DX journeys.



## HOW CAN CONSTRUCTION COMPANIES BENEFIT FROM DIGITAL TRANSFORMATION?

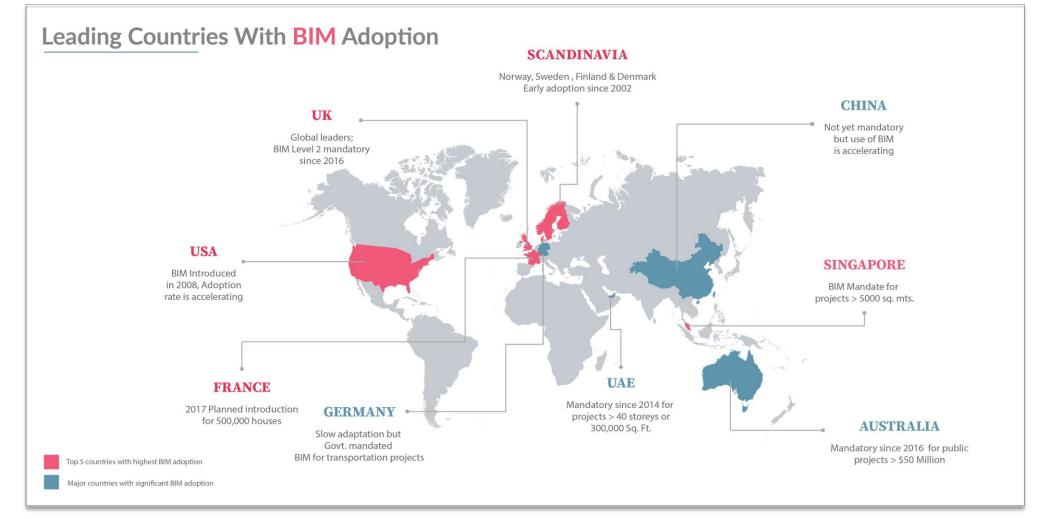
Improve productivity and better performance

) Connected Construction


Safety and Risk Management

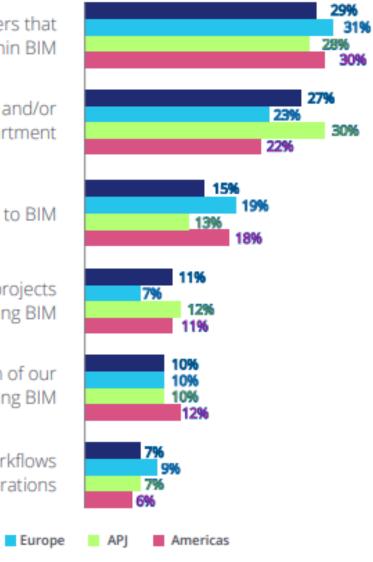
Improved cost of construction




#### **CHALLENGES VIEWD BY COUNTRIES**






**VARMINE** Project Controls  $E \times P$ 

#### WORLDWIDE BIM ADOPTION



**VARMINE** Project Controls  $E \times P$ 

Image courtesy of United BIM.



We have a few staff members that can work within BIM

We have a specialist BIM and/or VDC department

We outsource all work related to BIM

We do not bid on projects involving BIM

**BIM PROJECTS AND SKILLS** 

We outsource a portion of our projects involving BIM

Worldwide

Everybody uses BIM-based workflows in their day to day operations

**VARMINE** Project Controls  $E \times P$ 

## WHAT IS BIM?



## **BIM IS PROCESS...**

"BIM is the digital representation of the physical and functional characteristics of a facility and also the process of creating, using, and maintaining such a shared knowledge resource as a tool for decision making throughout the lifecycle of a facility



## CONSTRUCTION PHASES & BIM



### **VARMINE** Project Controls $E \times P$

### POWERFUL BACKEND BENEFITS OF USING BIM IN PRECAST

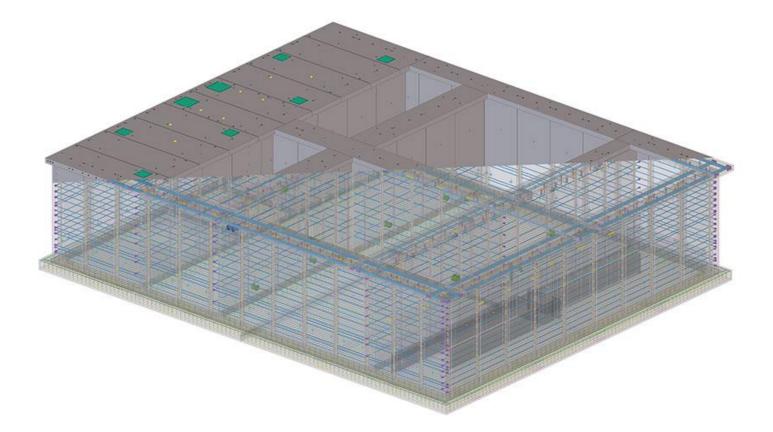



Image courtesy of Dutchland, Inc.



Transparent view of a precast, post-tensioned concrete tank using Tekla Structures.

#### PRECAST CONSTRUCTION USING BIM PROCESS



#### CHALLENGES IN CURRENT PRECAST CONSTRUCTION METHODOLOGY

Inaccuracies in Coordination

Greater drawing errors due to lack of visualization

Higher modification / rework

Costly material wastage and hiccups in construction process



#### **BENEFIT USING PRECAST CONSTRUCTION**

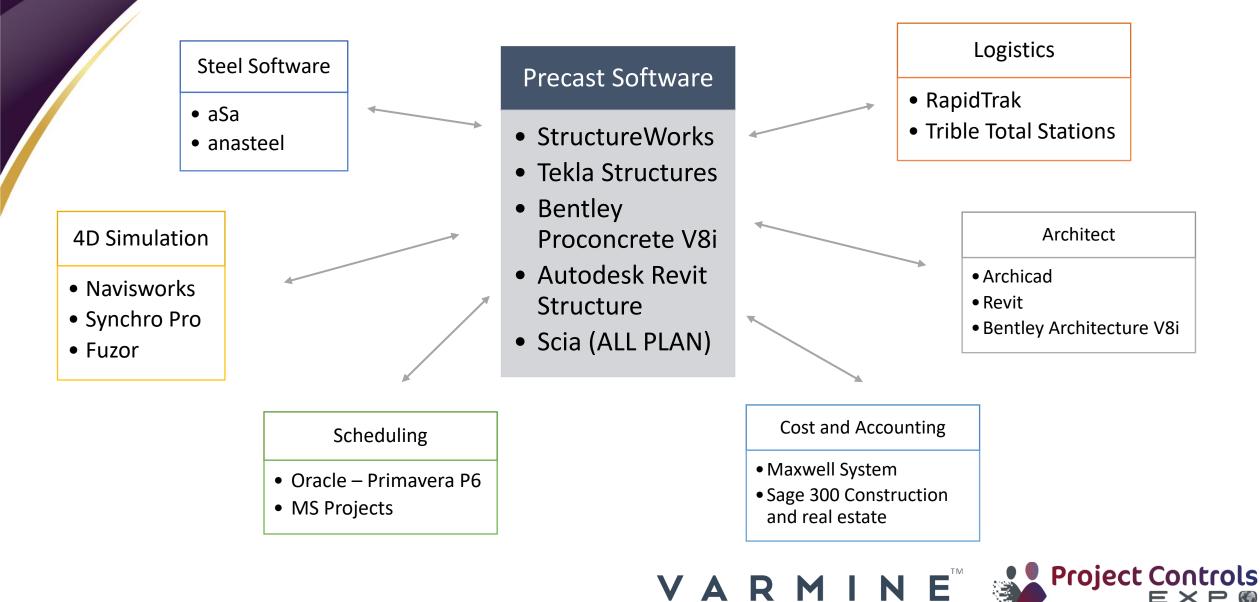
Reduce Engineering Cost

Enhanced cost estimation accuracy

Drastic reduction in engineering lead-time

Improved customer services

Support for automation in production




#### **BIM WORK FLOW FOR PRECAST CONSTRUCTION**

| Architect                                                                | Structural Engineer                                         | Precast (Tekla/Structure<br>works)                                                                                                                                                                                                               | Contractor                                                                                                                                             |
|--------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Architectural Design<br/>Model</li> </ul>                       | Structural Function<br>design & Structural<br>analysis task |                                                                                                                                                                                                                                                  |                                                                                                                                                        |
| <ul> <li>Architectural design<br/>model with<br/>modification</li> </ul> | Design intent validation<br>and structural review           | <ul> <li>Add detail information<br/>about connections,<br/>finishes, joints, etc.</li> <li>Detailed precast model<br/>finalised</li> <li>Plant management<br/>system for coordination<br/>of fabrication &amp; Logistic<br/>operation</li> </ul> | <ul> <li>Merges various sub<br/>contractor models for<br/>3D Coordination &amp;<br/>Determines<br/>construction schedule<br/>and sequencing</li> </ul> |

**VARMINE** Project Controls  $E \times P$  @

#### **BIM USES FOR PRECAST FIRMS**



#### **BIM USES FOR PRECAST FIRMS**





#### CHALLANGES & SOLUTIONS FOR PRECAST USING BIM



#### MINIMIZED CONSTRUCTION WASTE SAVES COST

#### CHALLANGES

- Material Waste
- Fabrication Error

- Accurate 3D Model
- Model based quantity take-off



#### **BETTER QUALITY CONTROL**

#### CHALLANGES

- low quality manufacturing on site due to incorrect usage or damage
- Weather conditions

- Manufacturing components in an offsite controlled environment
- Large batched of replicated products with 21 days curing and controlled temperature



#### MINIMUM SITE DISRUPTION

#### CHALLANGES

- Onsite Fabrication
- Use of heavy Machinery
- Storing material onsite

- Offsite prefabrication cancels out site disruption through seamless logistics
- Minimal use of machinery on site
- BIM Based model coordination



#### **BETTER CONSTRUCTION SCHEDULE REDUCE DELAY**

VARMINE<sup>M</sup> Project Contr

#### CHALLANGES

- Flawed quantity take-off
- Inaccurate schedule
- Coordination issues

- Prefabricated element take less time
- BIM Based Scheduling

## **THANK YOU**

